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a,b,d

vector potential

constant defined by Equation (Al5)

constants defined in Appendix C

arbitrary constants (see Appendices A and B)

constant employed in the series expansion for the jet sheet
location

constants defined in Appendix C

constant defined by Equation (Al6)

constant defined by Equation (D5)

constant defined in Appendix B

drag coefficient

jet-mamentum coefficient

constant employed in the expansion for the streamwise distri-
bution of the vortex strength

lift coefficient

pressure coefficient

airfoil chord, arbitrary constant (see Appendices A and B)



cm,qn,em constants defined in Appendix C

D

(12

drag force on the airfoil

camplete elliptic integral of the second kind =~ o
raminder in Simpson's campound integration rule

unit vector

damping factor

variable defined by Equation (59)

arbitrary function

streamwise distribution of the jét vortex strength

variable defined by Equation (58)

streamwise distribution of the jet vortex strength such that
g(x) = G[E(x,fJ)], constant (see Appendix A)

function employed in the series expansion of g

spanwise distribution of the jet vortex strength such that
H = dh/dn

spanwise distribution of the jet eortex strength, step size
employed in the mumerical algorithms '

arbitrary integral

arbitrary integral, jet momentum flux per unit span
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complete elliptic integral of the firsf kind
modulus of the camplete elliptic intm‘ais
conplimentary modulus such that k2 = 143
1ift force on the airfoil

leading edge of the airfoil

constant defined in Appendix B

constants defined in Appendix B

unit noymel vector

variable defined by BEquation (A25)
constant defined in Appendix B

pressure

variable defined by Equation (A26)
variable defined by Equation (52)
arbitrary constant (see Appendix A)

distance fram a source point to a field point

magnitude of R, variable defined by Equation (A27)

residual of a least square fit for a function, integration
variable (see Appendix A)



<4

<4

%Yy,2

ny

Hi

surface

span

variable defined by Equation (54)
variable defined by Equation (53)

Jjet thickness

variable defined by Equation (55)
trailing edge of the airfoil
components of the total velocity vector

x~component of the disturbance velocity vector, integration
variable (see Appendix A)

canmponents of the disturbance velocity vector
total velocity vector

disturbance velocity vector

rectangular

vector in a rectangular coordinate system
location of the bound vortex line

nondimensional variable such that x = vx/s 3



I-‘?“

<+

variable defined in Appendix E

angle of attack, integration constant defined by Equation (A21)

parameter of the elliptic integral of the third kind
(see Eq.. (65))

integration constant defined by Equation (A22)

scale factor employed in the expansion for the streamwise distri-
bution of the vortex strength

circulation of the horseshoe vortex system

vortex strength vector

parameter of the elliptic integral of the third kind (see
Appendices A and B)

difference between the values of a variable on each side of a
vortex sheet; step size (see Appendix E)

amall neighborhood of the origin

smll parameter

define a smll neighborhood of the control point

scalar potential for the total velocity vector

scalar potential for the disturbance velocity vector

variable defined by Equation (C4)

constant defined by Appendix C
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g,n,z

downwash angle
angle between the normal to the jet sheet and gz

curvature

S N

curvature obtained fraom a previous iterate
variable defined by Equation (D3)

scale factor employed in the series expansion for the jet sheet
location

variable defined by Equation (El)

coordinate system located within the jet sheet, arbitrary
integration variables (see Appendix A)

variable defined in Appendix E
camplete elliptic integral of the third kind
= 3.1415926. ..

mass density of the free stream, arbitrary integration variable
(see Appendix A)

sumation symbol
Jjet-deflection angle
doublet strength

a region in space



/] slope of the airfoil surface in an x-z plane

® vorticity vector

Subscripts

A pertaining to the ai.rfoil‘

J pertaining to the jet

m average of the values for a parameter on each side of a vortex
sheet

0] pertaining to the plane of symmetry (y=0)

p pertaining to the pressure force on the airfoil

X,¥,2 camponents in a rectangular coordinate system

£,n,¢ components in a coordinate system located on the jet sheet

® pertaining to the free stream

Superscripts

+ value of a parameter above the vortex sheet

- value of a parameter below the vortex sheet

! pertaining to a source point

*

canplex conjugate



pertaining to the point which defines the boundary between the
inner and outer regions of the jet sheet, pertaining to a
region containing the starting vortex of the system

vector

I. INTRODUCTION

Recent interest in STOL aircraft has stimulated investigations of
airfoil configurations employing both powered and unpowered devices for
obtaining high 1lift coefficients and improved stability characteristics
at low flight speeds. The practical feasibility of the powered schemes,
such as jet flaps, blown flaps, and augmentor wings was greatly enhanced
with the advent of high by-pass ratio engines. This provided substan-
tial incentive for obtaining theories capable of predicting induced
velocity fields and forces for configurations employing such devices.

A jet flap comprises a thin jet of air exhausting from the trail-
ing edge of the airfoil at an angle to the direction of the freestream
(refer to Figure 1). The presence of the jet contributes to the lift of
the airfoil in two ways: (1) the aerodynamic field is altered by the
jet, increasing the net 1ifting pressure force on the wing's surface,
and (2) the reaction to the momentum flux of the jet contributes to the
lift. Two related devices, the blown flap and the augmentor wing are
also shown in Figure 1. 1In the blown flap scheme the high velocity jet
is ejected over the upper surface of a mechanical flap utilizing the
Coanda effect to direct the jet stream. The augmentor wing employs an

ejector system combined with the trailing edge flap design in order to
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augment the thrust of the primary jet. This latter device develops an
increased thrust and also produces smaller nose-down pitching moments
than the other devices. The jet flap remains the simplest of the
configurations.

One of the first analytic investigations of the jet flap scheme

1 This was later ex-

was a two-dimensional theory developed by Spence.
tended to handle the three-dimensional problem with limitation to

elliptic loadings, constant jet momentum coefficients, and constant jet
deflection angles'.2 Several theories seeking to provide more generality
have been published. Those of Kerney3 and Tokuda4 who employed matched
asymptotic expansions to provide a method capable of handling more general
wing-flap configurations and the lifting surface theory of Lopez and Shen5
which offered the further advantage of also providing solutions for |
augmentor wings and blow flaps are representative. Other theories which
have considered the ground effects problem6 or provided more rapid compu-
tation techniques7 are now available. All of these methods, however,
employed approximations inherent in linear theories. That is, all flow
angles were assumed to be small. Although it might be expected that

such theories should be capable of providing good results for the forces
and moments on the airfoil, at least for situations where the jet flap

is at a small angle to the free stream, or where the momentum flux is
small, the accuracy with which the downwash field could be obtained is

open to serious question. In the past few years, two-dimensional

theories which accounted for nonlinearities have been reported.s’g
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Each of the existing theories may adequately account for parts of
the overall problem, but none may be éxpected to be capable of treating
the entire spectrum of flight regimes and jet loadings, With low jet
loadings and sufficient airspeed, for example, the field induced.by the
jet may be regarded properly as a small perturbation to thc basic' aero-
dynamic -field. With higher jet loadings anrd lower airspecds, this may
not be acceptable. If computation of the downwash field near airframe
members such as the tail surface is to be required, along with forces and
moments on the wing, additional care in the treatment of the jet is re-
quired. And there are regimes of flight demanding yet other factors,
such as consideration of the ground plane, be included in the theory.

The analysis described herein is intended to handle the situation
where the induced aerodynamic field of the jet is not small in comparison
with the normal aerodynamic field of the vehicle. It is to apply to
wings with jet flaps of either high or low loadings and offers the
additional benefit of improved downwash computations.

Formulation of the complete inviscid, incompressible, three-dimen-
sional jet flap problem is formidable. Even if the thin sheet approxi-
mations are employed, it is still necessary to apply a nonlinear boundary
condition at the jet boundary, the position cf which must be determined
in the solution. It is essential, therefore, to employ further simplifi-
cations in order to obtain a solution for the nonlinear three-dimensional
problem. It was considered important to account for the position of the

vorticity associated with the jet, departing substantially from the plane

12



of the airfoil in the flight regime of interest. When rollup of the

jet sheet may be neglected, as it is here, it is necessary to introduce
either an approximation for the spanwisec geometry of the jet or the
functional form of the spanwise distribution of vorticity in the jet.
The latter offers signifiéa.nt simplification of the theory and was chosen
in this theoretical model. .The streamwise variation of the deflcction
of the jet sheet remains to be solved as an important element in the
solution. The specific assumptions and approximations made in the pre-
sent theory, are discussed in Chapter II along with a general discussion
of the solution procedure. Chapters I1I, IV, and V are concerned with
the detailed development of the theory. The theory is then applied to
a number of situations and compared with a few of the linear theories as

10 in Chapter

well as the experimental results of Williams and Alexander
VI. Chapter VII concludes with a discussion of the strengths and weak-

nesses of the theory as well as areas of possible further study.

IT. FORMULATION OF THE ANALYTICAL MODEL

A theoretical model attempting to represent the fcrces, moments,
and induced aerodynamic field in the vicinity of an airfoil equipped
with a jet flap must represent the jet reasonably well within a few
chord lengths of the wing. This was an accepted premise of the analysis.
By virtue of the dominant streamwise momentum flux of the jet in the
near field, the rolling up process of the streamwise vorticity in the jet
sheet plausibly could be neglected in the near field regicn. But the

position of the jet sheet was retained as an important cslement in the

13



theory even though the precise spanwise geometiy would not be represented.
It is this feature which primarily distinguishes the present theory from
the linear theories. Viscous effects are known to contribute to the
induced field of the jet, but they are neglected along with compressibility
effects which play a role in the flow within the jet. The entrainment
properties of the jet, however, could be added to the theory with little
difficulty.

Even neglecting viscous and compressibility effects from the outset
in contemplating a theoretical model for a jet flap, an intractable, three-
dimensional, inviscid problem in aerodynamic theory rcmains. It would be
necessary to obtain solutions for thé flow within the jet (the internal
flow problem) and the external aerodynamic field, subject to the pressure
.(dynamic) and kinematic boundary conditions at the interfaces between the
-two flows. These interfaces could be expected to be highly convoluted
sheéts of semi-infinite extent. The geometry of the sheet is not known
initially and would have to be obtained as part of the solution. It is
essential to introduce further assumptions to obtain a tractable problem
with an appropriate reduction as to what may be expected of the theory.
Moreover, for the information sought in the analysis (forces and moments
on the airfoil and downwash data), a precise solution of the complete in-

viscid problem would seem unnecessarily detailed and unwarranted.

14




A. Principal Assumptions

The principal assumptions in the formulation of the analytical
model may be outlined conveniently as follows.

1. The flow field is assumed to be inviscid and incompressible.
The inviscid approximation, as in most aerodynamic theories, sacrifices
the capability of accounting for boundary layer phencmena such as skin
friction on thé airfoil surface and anticipation of separation phenomena.
These phenomena may be treated in a separate manner, given the basic
aerodynamic flow field, as in more conventional aerodynanic problems.
Two aspects of the inviscid approximation relevant to the jet flow which
could be of some importance in the jet flap problem are the viscous en-
trainment by the jet and the growth of the jet thickness by virtue of
mass and momentum exchange with the external flow. The former is likely
to be most important. The aerodynamic field induced by viscous entrain-
ment could be accommodated by employing a suitable distribution of sources
and sinks in the inviscid model. This is left for possible extension of
the present theory. Under the conditions of highly loaded flaps, the con-
tribution should be a small one. Compressibility may be of significance
in some parts of the jet flow and possibly in the concentrated vortex
cores of the wake. Considering the fact that most of the jet is in a low
subsonic flow regime and that the near field is of more importance than
the distant wake, compressibility should not exert a significant influence
on the results. For higher freestream velocities where the aerodynamic
field might be locally compressible, compressibility could possibly be

accounted for by employing the GOethert rule.
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2. The airfoil and the jet flap are assumed to be symmetric about
a plane containing the undisturbed freestream velocity vector. This is
an essential part of the analysis; more general geometries would require
a much more elaborate analysis.

3. Airfoils equipped with both full span and part span jet flaps

with constant jet momentum coefficients and which issue from a straight

trailing edge are considered. Variable distributions of the jet momentim

coefficient would be admissible in the basic theory, but such situations-
were not considered in the computations.

4. The thickness of the wing is neglected; however, camber and
variations in the wing planform are included. This procedure follows the
usual -thin airfoil approximaticn in aerodynamic theory, The resulting
force system on the airfoil may later be modified to account for the
thickness effects of the airfoil in an approximate manner by employing
a modified 1lift slope as initially uséd by Spence1 and discussed in
greater detail by Lissmnan.7 Furthemnore, such effects also might be
represented by a suitable distribution of sources along the surfaces
used to denote the airfoil.

5. Several approximations are introduced pertaining to the repre-
sentation of the jet.

(a) The thickness of the jet is neglected, and the jet momen-
tum coefficient is taken to be constant. Interaction between the jet
and the external field then arises solely from the normal force due to
pressure differences across the jet sheet. The jet is assumed to have

no spanwise component of velocity.

16
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(b) Rollup of the jet sheet at its edges is not considered.
This may be of importance for lightly loaded jets, at high freestream
velocities, or far enough downstream. For the situations of interest
here, however, the rollup is likely to be delayed to a point far enough
downstream to be of little influence on the results.

(c) The vorticity associated with the jet is assumed to lie in
a sheet generated by a system of straight lines normal to the free stream
direction (refer to Figure 2a) and tangent to the actual jet sheet at the
plane of symmetry. The position of the stream surface associated with the
jet may not be composed of straight line generators, as indicated in Figure
2a, but this arrangement does place the vorticity close to the actual
surface, an important factor when the jet lies significantly below the
plane of the wing. The small difference between the actual jet sheet and
the sheet on which the singularities are placed should not compromise

ihe solution in mannery, Similar approximations have met with

<}
n
O
"4
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3
€
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£

E

ample success in conventional acrodynamics.

(d) The lateral (spanwise) distribution of the spanwisc com-
ponent of vorticity in the jet sheet is assumed to be elliptical., This
distribution falls to zero at the edges of the-jet in the proper mamner
and greatly simplifies the theory. To be sure, the spanwise distribution
in an actual jet will not follow this pattein, but will vary in the
streamwise direction leading to concentrated vortex cores far downstrcan. .
Nonetheless, in the near field of primary importance, at least, the

distribution probably will have a form approximating an elliptical loading.

!
|
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Moreover, in view of the neglect of the fact that rollup occurs, a plausible
assumption of this sort remains consistent with the framework of the
balance of the model. It should be observed that employing such an as-
sumption for the spanwise distribution of the vortex strength is tanta--
mount to specifying the lateral geometry of the jet and it is far more
effective in simplifying the theory. One or the other must be given if
rollup is neglected. In order to provide greater care in modeling the
jet while retaining convenient working equations, the former was chosen.
The merit of this assumption ultimately may be tested, of course, by
comparisons with experimental data.

6. Certain assumptions are made as to the mathematical conver-
gence of the solution procedure. This method amounts to (a) starting with
a first approximation for the flowfield of the wing alone from an ele-
mentary linear theory, (b) solving the jet problem subject to the free-
stream and the disturbance field of the wing alone, and (c) employing
the jet solution so obtained, together with the undisturbed freestream,
as the cxternally imposed field in a more complete solution for the
disturbance field of the wing. If these last results prove unsatisfac-
tory, the procedure may be continued, obtaining a new jet flow, ctc.

It is assumed this procedure does converge to a solution.

7. In computations involving the influence of the disturbance
field of the airfoil, the vorticity in the wake of the wing alone is
assuned to lie in the plane of the surface used to represent the airfoil

in a manner similar to existing lifting surface theories. For a lightly

18
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- .. loaded wing and in the region close to the airfoil, this vorticity will

have a primary effect of distorting the jet sheet laterally. Because

_ this effect is not a primary consideration, and since the influence of the
~disturbance field of the wing is small compared with that of the free—
stream for the jet solution, such a contribution night be reasonably
.neglected altogether. However, the wake vorticity is retained and treated
in the above mamner because it does result in simpler equations. A more -
.accurate accounting of the vorticity shed by the wing would add signifi-
cant complication to the analysis unless some assumptions as to its
position could be made a priori. That part within the spanwise extent

of the jet presumably would follow the jet contour. But that near the-
wing tips would lie somewhere between the plane of the wing and the

location of the jet for an airfoil equipped with a part span jet flap.

B. Mathematical Formulation=

The coordinate systems employed in the analysis, along with the-
principal geometric parameters of concern are illustrated in Figure 2. A
right-handed cartesian coordinate system is employed, taking the x-axis
along the direction of the freestream velocity, the y-axis along the
intersection of the airfoil's trailing edge ?nd the jet, and the z-axis
in the vertically upward direction. For some computations in the jet
analysis it is convenient to employ an orthogonal,.curvilinear coordinate
'systgm located within the jet sheet: £ in the streamwise direction, n in

the spanwise direction, and ¢ normal to the sheet.

19
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Referring to Figure 2b, the two principal angles are defined in

the cross sectional view. The angle of attack (a) is the angle measured
from the x-axis to the chord line and the jet deflection angle (1) from

the chord line to a line which is tangent to the jet as it leaves the
trailing edge of the airfoil. The notation pertinent to the span lengths
and the wing chord are also shown in the figure..

The positions of the physical elements employed in the problem,
the jet sheet and the (thin) wing, are shown in bold outline in Figure-
2a. The locations of the singularities used to represent these elements
are shown in lighter outline. The singularities used to represent the
airfoil surface are placed in the z = 0 plane in an area corresponding-
to the planform of the wing. Those for the jet are positioned on a
surface tangent to the actual jet sheet in the plane of symmetry (the
y = 0 plane) having str:etight line generators (parallel to the y-axis)
as already mentioned..

Given a specific wing planform and camber distribution, togethcr
with the span length of the jet flap, the necessary parameters for this:
problem are:

(a) the angle of incidence of the wing ()

(b) the freestream velocity (U,)

(c) the angle of deflection of the jet (1), and

(@) the jet momentum coefficient {Cjj.

The objective of the analysis, then, is to obtain results for the forces

and moments on the airfoil, and the velocity field at points of interest



with respect to the airframe design (e.g., the downwash in the vicinity

of tail surfaces).

1. General Relations

Within the framework of the assumptions discussed above, the

analytical problem amounts to one of the Neumann type in potential theory.

The flow is everywhere irrotational and solenoidal® giving rise to a

- representation of the field in terms of a scalar potential. The normal

derivative of the scalar potential on the airfoil and on the jet sheet
must be zero; these are stream surfaces. The great difficulty of the
problem arises from the fact that the position of the jet sheet is not
known initially and must be determined in the solution. This requires
matching the pressure difference across the sheet with the normal
acceleration of an element of fluid in the jet (dynamic condition).
The relations required in the theory may be obtained from the

Fundamental Theorem of Vector Analysis (Helmholtz's Theorem)ll’lz.

Re-
ferring to Figure 3a, consider for the moment a closed, singly connected
domain surrounding the wing and jet and containing both (the domain en-

visioned here is large enough to contain even the starting vortex of the

system). Define the perturbation velocity Vv in the usual manmer

-+ > >
v=V -0 ey

(o]

where V is the complete velocity vector. Then

Y=-V+VxAh

] .
excluding the singular surfaces representing the wing and the jet.

21
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where

R=[Rl = Joex)? + gy)? + @2?

In these relations, integration is with respect to the source coordinates
(x') and the potentials ¢ and A are functions of the field point X.
Combining the above equations a general relation may be obtained for the

vector v 13

V& = i UH " -?)%d&‘v -” & o) Roast s

?CHM

1)
”I A X;f).') ng-dT' + ” (.\;' xﬁ') xgz-dg']
R R
§ represents the surface bounding the region T and n represents the unit

outward normal of S.

The vector field of concern is solencidal (V - v=0 evervwhere) ;-

A

therefore, the first temm of Equation {1) is zero. For a domain T larg

[¢]

enough, v is zero at every point on the surface S. Then the vector field

is entirely given within the domain as

v = ”f A x‘é) xR 470 2)

5
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This situation, of course, is not quite what is needed for the
problem at hand. Rather, one is interested in a part of the domain in
which the flow and jet geometry are stationary in time, a domain con-
tained within.the one described above and far enough removed from the
time varying starting vortex region so as not to be influenced by it
(refer again to Figure 3a). From the foregoing discussion, it should be
clear that the velocity at a point of interest within the inner domain

will be determined as the sum of two integrals of the form of Equation (2):

one over the inner domain and one over its complement. Since these re-
gions may be chosen for our purposes to be as large as desired, the con-
tribution of the second integral to field points of interest within the
inner domain (not too near the intersection of the jet sheet with the
boundary of the domain) can be made small enough to be inconsequential
in the analysis. Equation (2), then, may be written as

263 =i_" ”’[ W' xié) x R gpr

Now, the vorticity in the domain of interest is assumed to be con—
centrated in the form of vortex sheets.14 These singular sheets are re-
lated to the actual distributed vorticity regions by introducing the

vortex strength of the sheet, _Y*, such that (refer to Figure 3b)

limw t dS = y dS
t=>0

-
W e
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where w is the vorticity vector (E =VXx {r*) and the element of area S

14,15 that the

lies in a vortex region of thickness t. It may be shown
strength of the vortex sheet is related to the vector difference of

velocities on either side of the sheet
Yxa=av=® -¥v) (3)

where 1 is a unit normal to the sheet and V' (;,-) is the velocity vector
above (below) the sheet. Employing the definition of -Y>, the velocity

field ?(SE) may now be expressed in the form

i -k [ @

where S now represents the totality of vortex sheets within the domain
of interest. Equation (4) is the starting point of this analysis as it
is for most other problems in aerodynamics.

The problem now is to determine the vortex strength distribution.
on these sheets so that the flow is everywhere tangent to them. Suppose

for the moment the sheet positions may be described in the form-
f(x, y) -z=0
The kinematic condition of tangency then becomes:
V-v(E-2=0

or
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of of -
(Um+u)§¥+vw-w 0 (5)

Furthermore, since :? must be solenoidal and since by definition it lies in
the vortex sheet, it has only one independent component. Equations (4)
and (5) then provide four equations for the variables u, v, w and, say,.
Yy' Il the positions of the vortex sheets were known, then, by substitu-
tion of Equation (4) for u, v, and w, along with a rclation betwcen Yy
and YY obtained from the solenoidal character of —Y*, into Equation (5), a
single integral equation over a two-dimensional shect results for the
determination of Yy’ In view of the assumption to be made as to the
spanwise distribution of vorticity, the condition given by Equation (5)

may be met at the planc of symmetry where the sheet of singularities

and the stream surface of the jet coincide. Application of Equation (5),
starting at the trailing edge of the airfoil, may then yield the form
of the actual jet sheet at points not in the plane of symmetry. This will
not, in general, coincide with the sheet of singularities representing
the vorticity of the jet (refer to Figure 2).

The location of the vortex sheet associated with the jet un-
fortunately is not known initially. Moreover, the jet sheet must be -
positioned such that the pressure force acting on it balances the local

normal acceleration of the flow within the jet. This dynamical condition,

then, provides the necessary additional relation for the determination of
the position of the jet sheet.
Consider a jet sheet generated by straight lines such that it has.

only one finite curvature and with its normal vectors lying in planes
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parallel to the x-z plane. Applying the momentum theorem of fluid

e

mechanics to an element of the jet sheet, it may be show'm2 simply “that *

+.

=P 3B

where k represents the curvature of the jet sheet, p+ (p’) is the pres-
sure above (below) the sheet, and J is the momentum flux of the jet per
unit length of span. This relation may be placed in a more suitable form
as follows. By employing Bernoulli's equation along with Equation (3)
the pressure difference across the jet may be written

-2

->
)=- Gxn) "V

fp = p ‘P=-2-o(.V+2-V a

where
Vo= 20T

is the mean velocity at a point located on the jet sheet. Utilizing the-

definition of the jet momentum coefficient?‘

C. = 3
A SR R
7P % ¢

the dynamic condition may be written in the form

2 (?xr_’f) -\’Fm .
K= 7 (6)
CJ U c
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By definition, the curvature is related to the geometry of the jet sheet
under consideration through the relation

d%s
ax?

[+ &

K=

where the surface in question is given by the relation
f(x) -z=0

This form of the dynamical condition is to be satisfied at points on the
jet sheet in the plane of symmetry where the jet sheet coincides with
the sheet of singularities representing the jet vorticity. This condi-
tion is not met strictly at any other point on the jet sheet, of course,
mthm the approximations involved in the analysis. This is again a
consequence of the neglect of rollup in the theory.

Equations (4), (5), and (6) provide the basic relations from which
the vortex strength distribution and the position of the jet sheet may be
determined. An iterative procedure was adopted for that purpose in the
analysis.

2. Method of Solution

The solution procedure adopted for the analysis is most conveniently

presented by considering the perturbation velocity field on the airfoil

and the jet separately. Employing equation (4) the required relations

may be expressed as.
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o k[, Bxte k] Bite o

R ;R
: - -+
TGy =L [[ T xRae L f[ ¥ xR, (8)
A 47 S R 4 S R;
A J

where the subscript J (A) refers to the jet (airfoil). Equations (7) and
(8) provide a set of coupled equations for the vortex strengths on the
airfoil and the jet. They are analogous in some respect to the bi-plane.lﬁ.
problem. In choosing a method of solution for this problem, it is helpful
to keep in mind the physical conditiciis of primary intc
of the disturbances produced by the wing on the jet (represented by the
first surface integral in Equation (7)) may be expected to be small com-
pared with the interaction of the jet and the freestream for the flight
conditions of interest, whereas the reverse is not true. The jet induced
disturbances (represented by the second surface integral of Equation (8))
should have a significant influence on the wing field for a highly loaded
jet.

A solution for this set of equations may be obtained as follows.

(a) A solution for the wing alone is obtained as a first approxima-
tion for the use of modeling the influence of the wing on the jet in
Equation (7). This may be as simple as a lifting line approximation or
a more detailed solution if readily available.

(b) A solution for the jet is obtained subject to the influence of

the combined fields of the wing and the freestream. This solution com-



prises obtaining the distribution of the vortex strength along the jet
and the position of the jet sheet.

() The jet solution and the freestream are taken as a new imposed
field for a detailed solution of the wing problem. The solution pro-
cedure employed herein is of the lifting surface type-.

Given these results, the forces and moments on the wing may be-
obtained by direct integration, and the velocity field at points of
interest in the vicinity of the wing or jet may be computed as needed. .
Should the results for the last wing solution prove inaccurate, it is
possible to employ that solution as a new initial approximation and

repeat the entire procedure.

¢t

o the

ar

The analysis of the jet subject influence of the freestream
and the disturbance field of the airfoil may be referred to here as the
jet problem. That of determining the aerodynamic field of the wing sub-
ject to the freestream and the field of the jet may be termed the airfoil

problem in the following treatment.

3. Working Equations

A solution for the jet problem requires determination of the dis-
tribution of vortex strength (?j)~on the jet sheet as well as the loca-
tion of the jet in the plane of symmetry (z = fJ(x,O)). For a given fJ,
obtained either by an initial assumption or trom the results of a previous
iterate, the vortex strength may be determined by satisfying the kine-

matic condition,

[U, &, +V(x,0,£)] « V (£;-2) =0 ©))
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where

=¥
=
~t

VE =V, + = [ [S ds.' (10)
.y

’i:*

and ;A accounts for the influence of the downwash field created by the
airfoil on the jet. The proper solution is one which also satisfies
the dynamic condition

_2 (-‘;JKKJ) -vm

K
2
CJ Umc

(11)

An iterative procedure is adopted for varying £ 5 (x) so that Equation (11)
is met in the solution, along with Equations (9) and (10).

In a similar manner for the airfoil problem, a solution for the-
vortex strength distribution of the airfoil (-Y*A) may be found by applying

the kinematic condition

wm€x+¢)-vcfA-z)=o (12)
where
+' ﬁ
>+ 1 YA X -+
vix) = e ”S T dS;\ * vy (13)
A

to the location of the projection of the airtfoil on the z = 0 plane. In

the above equations

fA (X,Y) -z=10



represents the surface of the airfoil and $J accounts for the downwash

field created by the jet on the airfoil.

III. JET ANALYSIS

Consider now the problem of determining the vortex strength distri-
bution and the location of the jet sheet, subject to the influence of-
both the freestream and the disturbance field created by the airfoil.

For present considerations, the field induced by the airfoil will be
assumed to be known.

Recalling the curvilinear coordinate system (£,n) located in the
jet sheet, the vortex strength distribution associated with the jet may

be expressed as

Since the vorticity field is solenoidal, YJE and an are related through

the relation

9 Y 9

Jg , ° Yon _ 0
13 9N
or
9 v!

= - JE ‘
Yn I 5 dn

-sJ

The assumption that the spanwise distribution of loading on the jet has
the same functional form at all streamwise positions along the jet implies
that the components of the vortex strength may be represented in terms
of products of the form
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Yye = G(E) H() s

Yo = - e 7 H(n') an’

Defining
h(n) = T H(') dn'

-SJ

the equation for y Jn A be written

Yy = - 2oL h(n) (5)

If the loading on the jet is to be elliptic, as discusscd earlier,

h() = V1 - w/sp?

and then 2
- n/sJ
H(n) =

v 1 = (ﬂ/SJ)

The choice of an elliptic loading provides the primary advantage of
simplifying some of the integrals in the subsequent clements of the

theory, and does have the proper characteristics at the edges of the jet.

32

il



el

A, Integro-Differential Equations for the Jet Problem

1. Analytical Relations

Recall first the relations given by Equations (9) to (11)

1 ” {J'.xﬁ

VE U 8 + ¥yt || ——— ' (16)
s; R
df
(Uco+u)—‘ﬁ-w=0 @an
‘deJ
“ax?) 2 Gyxip -V
K= — 3 = > (18)
[1 . ?%)2]3/2 €; U, c

where these relations all pertain to field points located on the jet sheet

in the plane of symmetry (y = 0). Then

> S >

\' _ = (U, +u) e, twe,
y=20

since v =" 0 in this plane. And

V o+ ¥

g =V 2V
m

It has been determined that -integrations carried out with respect
to x and y rather than £ and n are most convenient. The cartesian para-

meters involved may be expressed as
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1/2
Yo = Yyr COS 0 = v 1+ (19)
Jx 'Jg JE/ [ ( ) ]

Y3y = Yo (20)
. 172
YJz=YJgsme_YJE;"cE/1+( ] (21)

dSJ' = dg' dn' = sec 0' dx' dy'

(-Y*J' X K)x = YJ)" (z - fJ') = YJZ' (}’ - )")

Gy xR, =5 0 -y -y - x)
/2

1
where R={lx-x1?~ Iy -y12+ [z - £ 1%

and, referring to Figure 3

sec 6 =/1 + (—a—x!)z

Then the components of Equation (16) take the form

s

J o ¥
u(x,0,z) = uA(x,O,z) + I I J
0

y'(z-f)+YJZ y

sec 0' dx' dy' (22)

8.
It Y Y - vg &x-x")
w(x,0,2) = w,(x,0,2) + L [ [ I o sec 68! dx' dy' (23)
-55 0 R

n
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Introdicing Equations (14) and (15) for ¥ JE and an into Equations

oo 2]

(19) through (21),

df 1/2
YJZ-GH [1+( )]

and let

gk} = G [E(x,£p)]

Then since gg :11'3% g% = g—xg— cos 6, Equations (22) and (23) may be written
1 ¥ ' SJ ' '
u(x,0,z) = uA(x,O,z T f g%'— (z - fJ') dx' I E—zéz—'!'
o -S3 R

(24)

$af =
31

O ——
m‘

&

Q-
&

Sy

T

[=8

and
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« J
w(x,0,z) = wA(x',o,z) - zlﬁ Igv dx! I &;_Ié_dL'...

o -s
J

o Sy

= f - x") & j *l}gL (25)
o -5
J

The integrals with respect to y' may be evaluated directly (refer to

Appendix A) to yield

1 T S afy!
u(x,0,2) = 1,(x,0,2) - —— J[g - KKKk - B *

21rsJ
o X -
.g% (z-£,") ?’_ [E(k,) - ng K(kJ)]]dx' (26)
J

W(6,0,2) = wy(,0,2) + =1y | [g'kJ [KCkj) - ECk)] +
o

2'rrsJ
dg' ky 2 :
T (xx") 7 By - gy K (k] dx (27
cJ
where
2
2 5J
Kkt = (28)
J st + _(x-x’)z + (z - fJ';Z
2 2 _
kJ + kcJ =1
36
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and K, E are the complete elliptic integrals of the first and second
kinds, respectively, with modulus k.
The dynamical condition given by Equation (18) may bc written in

the form

. 1 df
_ ez.%.[Um(x,O,fJ) = l"d%l wm(X,O,fJ)]

df .
CJ Uf, c [1 + (—33%)2]

(29)

since, in the plane of symmetry

dg af5
e > - d.XW[Um(x’O’fJ) - ax wm(x)O,fJ)]
(¢ x n) Vi = EY)
J
1+
[
where
i P
Upy=z @ +U)
and

Wo= 3 W)
as discussed previously.
The kinematic condition, Equation (17), may be written simply as

de
U, + u(x,O,fJ)] .o w(x,O,fJ) =0 (30)

Equations (29) and (30), with u and w substituted from Equations

(26) and (27) represent a pair of nonlinear integro-differential equations
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fbr fJ(x)'and g(x). The jet location apd slope are known at x = 0. The
fﬁnction g must display the proper behavior; that is g%-must vanish at
infinity as well as having a logarithmic singularity at the origin of
the jet. This system of equations is to be solved numerically for these

functions.

2. Forms of the Equations for Numerical Solution

The method adopted here for the solution of the cquations dis-
cussed in the previous section is related to the integral methods of

fluid mechanics.17’18’19

The funmctions fJ_and g are represented by
truncated series with coefficients to be determined in the solution.
These functions are chosen to give the proper behavior for large x

and to meet the appropriate boundary conditions. The semi-infinite do-
lmm,OiximﬁbdwmwdeUmr%mm,amwrﬁddoixi§mm
a far field extending beyond ;. The functional representations in the
near field are of primary concern here. Those in the far field were
chosen to facilitate integration in that domain; the choice there is not
particularly critical in the solution since contributions to the inte-
grals from that region are small if ; is large enough. Choices for ;
in the computations of 5 to 10 wing chord lengths were found to yield
satisfactory results. The optimum choice depends on the parameters of
the problem, such as ql' This subject will be discussed further in con-
nection with the computational results.

It may be anticipated that iy will decrease monotonically with

increasing x, as it must ultimately approach zero. Morcover, the function
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dg/dx should display a logarithmic singularity at the origin as suggested
by the two-dimensional theory of Spem:e.:l The choice made in this ana-

lysis is a series of exponentials such that

N d N-1 ) In(x/s ) _
g’%' = & Cn % = - 7 C“ n cxp {“?Bk) + CM -'-f—-——q"—z‘rf (31)
n=l n=1 ik \ -.IJ , v ls—'+ .l.] ;L
J
so that
N N-1 S Yy x/s; +1 -1
g= X Cngn= L C -—‘B]-[exp(-z‘ﬁzc- —1] +ZsJ CN [ln J -
n=1 n=1 " Sy »’x7sJ +1+1
1n(x/sJ)
4 421 2] (32)
Y :<7sJ + 1

The factor B is a parameter chosen along with; for a particular problem
to best represent the function over the near field domain. A value of

B between unity and 10 appeared to be suitable for most of the computa-

tions attempted. This functional representation is retained in the com-
putations extending from x = X to infinity as well as in the near field
region.

The function f J(x) was chosen to have the form

f a

J_1 _ 1 M

— = + 1 _— ., 33
55 v [a-1 & )+ao+(5c'+1)+ +——M(;+1) ] (33)

where X = yx/s 3 and v is a scale factor. Values of v found to yield
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acceptable results in the computations attempted were in a range from

1 to 10. Since the jet passes through the origin, it is required that

M
E—l a, =0 (34)

Employing Equation (33), the slope given by

v de -, ] a; ] 2a2 ) . M ay 35)

nust agree with that specified in the problem at x = 0. Thus

daf M
') J =a,- & ma_=-tan (t + a) (36)

Y — -1 - m
J‘ dX x = 0 m"'l

There remain M free coefficients in the functilon to be determined in the

solution.

Now, while the form of Equation (33) was employed for the jet in
the near field region x 5_;, it was not employed to represent the jet for
X > ;. There the jet sheet was taken simply to have a constant slope,
matching the value of the near field function at x = ;. This represen-
tation is not precise, of course, but simplifies the integrals considerably
and should not seriously detract from the merit of the solution. Con-
sidering the inviscid problem, where the sheet would be allowed to roll

up, the resulting trailing vortex pair would have a constant slope, apart

from viscous interactions.
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Given the above functional forms for g and £ AL the final forms of

the equations discussed in Section 1 may be written as

de

[Um + u(x,O,fJ)] —ai - W(X,O,fJ) = 0 (37)
de
2 [U, + u(x,0,f ‘ w(x,O,fJ)] N-1
k() = [ I C onexp an) -
[1 + ( n=1 _ Sy

ln(x/sJ)

\SIZ.I (38)

N (X/'SJ + 1) J

1 N °° df "
u(x,0,z) = uA(x,O,z) - —— P C I[gn _cb?' J(1( E) +
o

21I'SJ n=1
d
g"(z-f') s E -k ZK)]dx' (39)
CJ
0,z) = 0,z) + —L rgc]o 'k, (K- E) +
W(X, sZ "WA(X, sZ -2_11'—_5-;7 o1 no gn 3 .
g’
"asc——(x-x)-——z-(E-k K)]dx' (40)
CJ

and
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dzf

it +( T

where U, W in Equation (29) are now given simply by U,W with the under-

(41)

standing that these are the values computed excluding a suitably small

. region in the vicinity of x in the integrals of Equations (39) and (40).*

B. -Method of Solution

Equations (37) and (38), upon substitution of u, w and k from
Equations (39), (40) and (41) comprise a pair of integro-differential
equations for the functions f 3 and g. Employing the approximate forms

for £ J and g, these ¢quations become a pair of algebraic equations for
the M + N coefficients in the solution. With a finite number of terms,
M + N here, it is not possible, of course, to satisfy these equations at
all points in the semi-infinite region 0 € x < =, The equations could
be satisfied exactly only at (‘M + N) points at most. Rather than re-
quiring the equations to be met precisely at the (M + N) points, it is

advisable to meet the relations in a broader sense over the domain. This
is accomplished in the analysis by requiring the equations to be satisfied
in a least squares sense over the near field domain 0 < x < ;, subject
to values at a larger number of points.

The numerical analysis employs a set of control points spanning

the near field domain 0 < x < x. The number of such points. is chosen to

— ot +
A region small enough such that its contribution to U —-—2—— is
negligible.
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be several times the value %— (M + N) such that the least squares method

will yield smooth functions f, and g, and so that information of the

J

necessary resolution within the domain is represented.

The procedure employed for the solution is an iterative one. It

may be outlined as follows.

@

®)

©

A trial function k(x) is first chosen. k is -employed as

the primary representation of the jet rather than f R be-
cause it is of primaxy importance in the dynamical condition
and it is more sensitive than f; or df J/d.x. Employing x

at the control points, a first integral obtained numerically
.)_rields' df ;/dx at the control points. These values are
employed to find coefficients in the expression for f 3 which
yield a least squares fit for df J/dx. f 3 and df J/dx are then
evaluated from this function at the points employed in ob-
taihing the necessary integrals.

These values for f 3 and df J/dx are employed to calculate the
coefficients of the Cn in Equations (39) and (40) at each
control point. Substituting the results into Equation (38),
the dynamical condition, the Cn values are obtained so as to

meet that condition in a least sauares sense over the domain.

Finally, new values for df J/dx are obtained at the control
points through Equation (37). The curvature corresponding
to this new distribution of df J/d.x is then estimated. These

are compared with the starting values and a new iterate k(x)
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is generated. When x(x) values obtained in two successive
iterates agree within a given error bound a solution is
formally obtained for the problem.
The scheme described above is not the only one possible, but it'is stable
and converges rapidly. It would be possible, for example, to employ the
linear tangency condition in step (b) rather than the dynamical condition,
for evaluating the Cn' + Then the dynamical condition would yield the new
Kk iterate directly. It was found that this method is not always stable.

9

Halsey” found similar results in a two-dimensional theory.

IV. NUMERICAL ASPECTS OF THE JET PROBLEM

The integrals to be evaluated numerically in the analysis require
careful attention in several respects. They are discussed.together with
the numerical integration scheme in this chapter. The relations emplqyed
for evaluating the coefficients Cn in step (b) of the iteration scheme
are then summarized. A description of a method of evaluation for the
starting values and the new jet function is then given followed by a

discussion of the procedure adopted for generating a new iterate k(x).

A. Evaluation of the Integrals

The complexity of the integrals involved in the equations for
the velocity field requires that they be computed mumerically. Three
difficulties arise in this comnection:

" 1. singularity of terms in the integrand at x' = x, the con-
trol point

44



e

2. infinite upper bound

3. singularity at the origin caused by the logarithmic temm in
the.vortex strength expansion

1. Singularity at the Control Point

At the point.x' = x, the modulus of the complete elliptic intcgrals
'(kJ) becomes unity and the elliptic intégral of the first kind becomeé"
infinite. This presents the probiem of numerically integrating thrbugh
a point in which some of the terms of the integrand arc singular. Of
course, the integral is finite. It is possible to circumvent this

difficulty by applying the identities

Z-"-f ! 2
z. - £ ——-—,—J S,
J = 1 X - X J (42)
k 2 K 2 z —.fj' 2X - X'
cJ Jo1+ ("f—f"
X - X' = 1 1 SJZ (43)
K 2 X 2 Z - fj‘ g XX
cJ Jo1x (—ﬁT
k s
- cJ J
ky = T L\ AVZ X X (44)
[1 lx=xr ]

Inserting Equations (42) through (44) into the integrals under considera-

tion results in the expressions
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u(x,0 ) u(xOf)- z
’ A ﬁ'nﬂn S5 dxri+ 2 - £, 172
X - X
2
- £t -
dg ' 2 1 E-k K -]dx' .
dx" x - x' k, z-f'sz-xr (335}
1+ J
X - X
and
N gn' (X - E)
w(x,0,£.) = w,(x,0,f C cJ
(”J) A(’ ) lnj[sJ1+z-J 1/2
X - x"
dgll'l E-kCJZK '
deE; z-fJ’z X - X! (46)
L+ lsx—x
Since
K (K- E) >0
k»1
2
11mE~k K
k1 k
and
1 275 (4
x»x' x - x' dx' | x*=x

the expressions within the braces of Equations (45) and (46) are con-
tinuous and non-singular in a small neighborhood. of the control point

(x" = x ). These terms are plotted in Figure 4 as f; and f,, respectively.
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The associated integrals may be written as Cauchy principal values,

xtes £, (x")
W dx* 3 1=1,2
x-el

in a neighborhood of x' = x. It is then possible to expand fi(x') in .
powers of (x - x") within this neighborhood and to perform the integration
analyticaily. By choosing € and €, to be small enough, this expansion

may be truncated to fourth order in (x - x') ‘without loss of accuracy (refer
to Appendix F). In any event the contribution of this element to the

total integral is extremely small.

2. Infinite Upper Limit

The problem of numerically integrating to infinity may be removed
by employing a change in variables. A natural candidate for this task
is the modulus of the ellpitic integrals kJ. From Equation (28) it can

be seen that

2

. s dk
dxt = — - 3 )
(x = x') + —;I',%r (z - £, %5

By employing Equation (47) an intégral over the range x < X' < »= may be
transformed into an integral with respect to k 5 over the internal kJ <
kJ < 0 where kJ = kJ(x). For example
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g, de' dg ' k : .
" l [53“ T Ky (KB g (2-55") 'k‘jz kg’ K)] &

0

. 2 ’
Sy [8.' 85 g LB E OBk K dky €48)
1 l_x-f &L 7R Tx 2 2 TS Al :
) J "cJ i1+ —_r
J dx’ X-X
By noticing that
2
1imK-E_1imE "X K

w
017 T k0 22 T

and .

lin &' _1m %

X3 X ~ X' X dx'
it can be seen that the resulting integrand is zero at kJ = 0, The slope
de/dx is taken to be a constant here, in accord with the approximate
representation of the jet in this region as discussed in section A2 of
the previous chapter. The resulting integrand for the x (z) velocity

component is plotted as fl (fz) in Figure 5.

3. Singularity at the Origin

The final difficulty encountered within the integrands of interest
involves the logarithmic singularity at the origin due to the term dgn/dx.
Consider only the integral involving this term in a small & neighborhood

about the origin.
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‘2
dg' z-f5;, E-kj K g
dx'x-)ﬂlg- z-fJZ
1+(x-x')

O Sy,

The group of terms

_ - 2
sz' 1 E kcJ K 1
x-x! kJ zZ - fJ' 2 x-x!
1+
==}

(plotted as f1 in Figure 6) may be given their value at a mean point

and removed from the integral to provide the resulting approximation

far Fomation (4Q)
AL et (R

2 /s +T -
J xX-X' kJ z - fJ' 2 x-x! §/Ss. + +1
1+ —— §/2 - J
X - X
In (G/SJ)
+ 2 log 2
§ sJ +

XX (49)

A similar relation was developed for the z velocity component (the term to

be evaluated at the intermediate value is plotted as f2 in Figure 6).
The integrands of Equations (39) and (40) have been plotted as

£

1 and f2 respectively in Figure 7 for the remaining intervals.
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4, Numerical Integration Method

In accord with the factors mentioned above, the integrals were :
subdivided into at most the sum of five integrals over parts of the do-

main of interest.,.

D<x'<$§

§ <x' <x - €

x - <x'<x+
A
x+ezix'§x
el
x<x' <o

where ¢, €15 and e, are small values chosen on the basis of integration
acéuracy. Those integrands not involving the logarithmic singularity
at x = 0 were integrated directly from 0 to x - €+

Now, in order to represent the integrals well for a range of ject
geometries, it was decided to choose the main control points at nineteen
equally spaced locations along the jet (AZ = constant). An additional
control point was placed at A£/2, within the initial region of rapid
variation of the jet geometry, resulting in a total of twenty control
points in the domain 0 < x' 5_;. Step sizes for the integrations wcre
taken to be ten times smaller, resulting in a total of 201 points in
the numerical grid. These values were found to. give satisfactory accuracy.
Numerical integration of the functions with nonsingular integrands was

performed by means of a compound Simpson's rule.?Y
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n . .

[T ax=Rugy e ety ity ez g ety e
) : _

0

where
£; = £0x;)
h = (x3,; - X;) = constant

and the remainder En is given by

The indices refer to the grid points within the integration interval
of concern. Numerical algorithms for the complete elliptic integrals

are described in Appendix B.

B. Evaluation of C,l'

Upon evaluating the integrals numerically at each of the control

points, one has

N
S
u (Xi) = uA (Xi) + nfl Cn In (xi)
and
N N
w (xi) = Wy (xi) + nﬁl Cn J h (xi)
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where X; denotes the ith

control po:._nt anc} In (xi) . Jn (xi) are now known
coefficients. These expressions may be substituted into the dynamical

condition, Equation (38) to yield

N dgn N de N
¢ nfl Ch—ax ) [WUg +uy + nﬁl Ch I - l_Eb_c' (wy * nzl Cp I =
df 2
76 u%cx [1 + (—a;%, ] (50)

This system of twenty equgtions in N unknowns (the N Cn values) is an
overdetermined system (N was. chosen to be 6 in the computations). The
Cn values are evaluated such that Equations (50) are satisfied in a least
squares sense over the domain.

The least squares solution may be obtained by minimizing the sum

of the squares of the residuals

M 2
r= if:?l [Ql - Ti] (51)
where
N dgn (Xi) N
Q; = - nﬁl G — & [s; * nfl Cy ths! (52)
df., (x.) 2
T, = 3¢ U e kxp) [1 + (“‘Ia:(“l“ ] (53)
and
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] lde (xi)

S "‘Um"'uA T ‘VA (54)
o C8£, (x;) | |
thi = I &) - —&— Jp &) ' (55)
Thus
M 3Q,
1l ar i
a—= 2 Q. -T)x~ =0 ; n=1,...,N
2. 3C j=p 1 1730

Substituting the expression for Q into this relation yields

M N dg_ (x;) N Cdg (X))
A R IR e A N | R

which may be solved for the CT1 values.
Equations (56) comprise a nonlinear system of algebraic equations
for the N values of the coefficients Cn' A solution may be obtained by

21’22. This 1s an iterative

employing a variation of the secant method
procedure starting from a trial set of values {Cn}. As for most such
nonlinear problems, the trial values for starting the solution must be
reasonably close to the solution for rapid convergence of the method.,
Once the computations are underway, preceding iterates serve this pur-

pose well enough. In a new computation, however, it may be necessary

to provide initial values without the guidance of prior solutions. One
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means for accomplishing this is simply to employ the linear tangency
condition, Equation (37), solving for the .Cn-values enploying .the
current fJ function. These values of Cn may then be used to calculate
the velocity. components, u and w. Since the velocity components change
less rapidly than the vortex strengthg, a linearized dynamic condition
may now be employed (with only ? as an unknown) to obtain an improved
set of values {Cn}. This last set of Cn values can then be employed as
a trial set in the solution of the nonlinear dynamical condition.

Experience with this procedure has been satisfactory.

C. Evaluation of the Function fj

The function fJ is determined iteratively in the solution pro-
cedure. An initial trial value must be chosen for a new problem. Sub-
sequent values are generated by the program in the iteration scheme.

The procedure, outlined in the previous discussion, amounts to (a)
starting with a trial fumction ﬁJ, (b) evaluating g(xi) given fJ SO
that the dynamical condition is met, and {c) emplcying the tangency con-
dition to guide the choice of a new iterate for the function fJ. Both
fj and g must be such as to satisfy both the tangency and dynamical con-
ditions in the solution,

Upon initiating a new computation, it has been found convenient
to start with a function fj derived from the two-dimensional solution
of Spence.1 The appropriate equations for this purpose are listed in

Appendix C, While this method is best for small Cy, @, and 7 values,
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it is generally preferable to employ solutions obtained in the present
analysis for similar parametric ranges, when they are available, if CJ,
a, T are large. More rapid convergence can then be achieved, as would
be expected.

The function £ 3 giving the position of the jet in the analysis
is not itself sensitive cnough to be employed either for the estimation
of érrors involved or for iterative purposes. Since both the first
derivative and the curvature involving the second derivative arise in
the theory they must be represented with sufficient accuracy and regular-
ity in the numerical scheme. Therefore, the curvature, being most
sensitive, was employed both as a basis for the choice of new iterates,
and as the factor on which accuracy was judged.

The computations start with a set of values for K(Xi) at the
twenty control points. This function is numerically integrated to yield
values for df J/dx at the control points., The method émployed for inte-
gration of the curvature may be found in Appendix D. The coefficients in
the expansion of Equation (34) for fJ are determined so as to provide a

least squares fit to the slope, df J/dx, at the control points, Thus one
has23,24

J M M
jfl a [151 GJ- ;) G ;)] = i§1 F(xy) G.(x;) ;k=1,...,0 (57)

where a 3 (G =1, «e.y, J) are the coefficients in the expansion for f J'

(cf. Equation 33) and
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65 (x5 = 3 [1 -l ] (58)

(x; + 1)j+1
df,  df; (x = 0)
F) = - —= (59)

Upon determining the coefficients aj in the rcpresentation of fJ,
it is necessary to determine positions of the new grid points Xy such
that they are equally spaced along the jet. Equal spacing of the grid
points is desirable for better representation of the functions involved
in the numerical work as mentioned in Section A4, This amounts to

numerical integration at the expression for d/dx
; N B
Eax = J/1+(13%)2dx (60)

dividing the interval E into suitable equal intervals (200 here), and

o™ >
1l
O X >

establishing a correspondence between &, and X for each grid point, The
relations involved and the integration scheme employed are described in
Appendix E,

The computations employing fJ proceed as discussed in the previous
secticn to an evaluation of {Cn} satisfying the dynamical condition. The

tangency condition remains to be met. This relation

de
[Um + u(X,O,fJ)] I - W(X,O,fJ) =0

may now be employed directly to evaluate de/dx at each control point,
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D. Generation of a New Iterate

As mentioned in Section C above, it is advantageous to employ x(x)
as the basis of the iteration scheme so that the key aspects of the jet
with respect to the mechanics of the problem may be represented properly.
Values of k employed at first in the computations arc smoothly varying
in the domain. New iterates are also to be required to vary smoothly.

The problem here, of course, is that of generating smooth changes
for k based on information at the discrete control points regarding df J/d::c.
From the definition of k, a small change may be related to changes in
af J/dx and dzf J/dx2 as follows

a®s, af; jafy
( S_Z’K(?E

U TR

A procedure for obtaining a set of S8k values at the control points which

proved effective in the iteration procedure was simply to ignore the
first term (it could be anticipated to be small), and to employ the re-
lation

- _337101 (

. = =) -
GKl Koi

1+ ("Eb_c oi

where Koy Tepresents the value of k employed in starting the preceding
iteration and §(df J/dac)i represents the difference between the computed

values of df J/cbc and those values cmployed in starting the preceding
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interation. The iteration proccdure converged when the new iterates were .

chosen according to the relation

. 2 . + .
ncl |<01 eGncl

where e is a damping factor chosen to be small-initially and to increase
to unity as the solution was approached. Initial values for e in a new
problem might be on the order of 0.2.

A measure of the error in the result may be obtained by comparing
these new values of k; at each control point with those employed upon
starting the previous iteratioﬁ. A sum of the absolute value of the re-
lative errors between these two values was employed in the computations for
this purpose. The existing method employed of valuc of 0.6 for this sum
(or the average relative error at each point was required to be below 0.03).
If this criterion was not met, the new values for the curvature were

employed to initiate another iteration,

V. ANALYSIS OF THE FLOWFIELD OF THE AIRFOIL

There are two aspects of the aerodynamic field of the airfoil
entering the theory. The firs't is the need for some initial estimate
>f the influence of the flowfield induced by the wing on the jet., This
nay be obtained by means of one of the simpler linear wing theories
for example, The second is the solution of the flowfield about the
airfoil subject to the full influence of the disturbances introduced

by the jet. The first is treated here assuming the airfoil to be
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represented as a lifting line with the appropriate trailing vortex dis=-

tribution. An elliptic loading is assumed for_this purpose with a total
1ift estimated to rcpresent the final solution (at least somewhat larger
than that‘for the wing alone). The second is accomplished by numerical

methods in-an adaptation of lifting surface theory. .

A. Initial Estimate of the Flowfield of the
Airfoil for Use in the Jet Solution

For an elliptically loaded wing operating with a lift coefficient

the distribution of the vortex strength along the lifting line may

14
P=T, /1 - [-}SL‘A)Z (61)

21
I‘A—‘Z-CLUOOCO

Cp»

be expressed as

where

The vorticity associated with the bound vortex may be placed at the

quarter chord point (x = ‘b) of the airfoil15

and the trailing vorticity
may be regarded as lying in the z = 0 plane (refer to Figure 8).

The velocity components u]\and L7\ induced by this vorticity dis-

tribution may be determined from the relations25
1 A
- z dr' 'y -yt
N | & e 62)
G = xp)" + 27 g
A

S
A 1
wpm L ar | G ) 00y PAD A (1 x - Xb) :
A ﬁ-iA dY [[(X - xb)? + 22] R + (y N y|)2 " 22_ + Y ' d)’ (63)
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Values of u, and Wy at y = 0 are required in the jet' solution, These may
be obtained by carrying out the integrations of Equations (62) and (63)
subject to the vortex strength distribution of Equation (61) to yield

(cf. Appendix A)

T, 2z kA E(kA)
uA(x,O,z) = o 57 - — = K (kA) _ (64)
' A cA
r [eve -vyr lEo 2 \
SA YT M fA YA 2
Wpkx,0,2) = - g 5 e S R NI V) I
A A kcA Sa + z

;(1- — )] (65)
\ S, * 2 :

where K and E are the first and second complete elliptic integrals of

modulus kA and T is the third complete elliptic integral, which is also

a function of the parameter Ope And

s 2
022 A
A S + 2z -
A
2
1 2. A
A Z .2
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B. Solution of the Flowfield about the Airfoil Subject
to the Interference Field of the Jet

Given the solution of the jet problem as described in Chapters III
and IV, subject to the estimated interaction of the airfoil of Section
A above, it is next regquired to obtain a more precise solﬁtion for tﬁe
flowfield about the wing. This is formally given by the relaticns

(recall the discussion of Section II B-3)

. -»> ’ ? ''x K -> >
V&) = U, 8 + }ﬁ ” A—Rg— ds,' +¥; &) (66)
S
A

subject to the kinematic (tangency) condition

.afA BEA
UK-*‘VE-)-’—"w:o (67)

at points on the airfoil whose surface is given by the equation

fA (X9Y) -z2=0

It should be pointed out that unlike linear lifting surface theories

the streamwise disturbance velocity is no longer negligible compared to
the freestream velocity.

The velocity components u N and Wy at points on the surface of the
airfoil may be evaluated by integration over the vortex strength distribu-~

tion of the jet
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Ty ” L asy (68)
5
J

Only airfoils with little or no dihedral (i.e. 3fA/ay is negligible) are
considered here. In addition it is assumed that the spanwise velocity
component is small compared to the downwash and the streamwise velocity:
components. Therefore, the equation necessary for the evaluation of this
component is dropped from the ensuing treatment. In Equation (68), the
integrations with respect to y' may be obtained analytically (refer to
Appendix A). The remaining integrations must be carried out numerically
in a manner already described in Chapter III.

It remains to arrange the surface integral of Equation (66), which-
gives the contribution of the vorticity associated with the airfoil to
the velocity field, in a form suitable for solution of the airfoil probiem.
The surface over which this integral is evaluated includes the surface
used to represent the airfoil (the projection of the wing onto the z = 0
plane) as well as the surface containing the vorticity which is washed
downstream, the wake vorticity. The location of the wake vorticity is
not known, a priori. For a relatively lightly loaded airfoil the contri-
bution of the vorticity created by the airfoil may be considered negligible
compared to the vorticity of the jet in this wake region. However, in
order to simplify the resulting equations the vorticity shed by the airfoil
will be retained. It is assumed that the location of this vorticity may

be taken to lie in the z = 0 plane. This assumption is made in most air-
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foil theories. It is therefore possible to utilize some of the mathe-~
matical aspects of those theories.

14

Employing the definition of a vortex sheet,” the vortex strength

of the airfoil may be presented by the equation-

> > >
Yo < -Av e, + Au ey, (69)

where

Defining a doublet strength as:

T °T
> d -» __(l >
YA " S tix % (70)

Equation (70) along with the assumptions discussed in the preceeding para-
graph may now be employed to provide the resulting equations for the

induced velocity field created by the airfoil

SA
u = 1 ?:g'_'_ Z d ' dx' (71)
A Axw ox' 3
L.e. -s R
L] . A
S
© A '
ot,! oT,'. Y
I | d (x-x") d ¥y =y") ' v 72
YAT T @ I J’ [ ax" g3 T Ty R dy' dx 72)
l.e. -SA
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Solution of the airfoil problem requires these equations be applied to the
z=0 plane. It may be seen from Equation (71) that u, = 0 for this plane;
therefore, only Equation (72) remains to be evaluated.
Equé.ti_on (72) as it stands contains a singularity with respect to
both integrals at the control point (x,y); therefore, a more suitable
25

kernel will be sought. Following the procedure of Robinson and Laurmann

this equation may be written as

S
1 A 3¢ 11
VAT T 4w I J W7 7] & o (73)
YA
L.e. -sA

Further manipulations of Equation (73) provide the final working equation

for the downwash induced by the airfoil in the formz6
s-;A t.e. At
- _1 y -y' 3 d x - x'
W, = - . = —— |1+ dx' | dy!'
AT T dw f 2, 273 [ f " ( R ] y
-5, G-yl +z ie.
s
A t.e.
2 at,!
z d .x - x'
- ; dxl d)" (74)

-SA gloeo

for an arbitrary field point (x, y, z). In the limit z + 0 the second
term of Equation (74) vanishes and the first is given by the Cauchy prin-

cipal value
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}'"6 t.eo

. ot,* . . )
l 1 - xt '
VAGY,0) = - g o I %[ J ‘5%‘(1+xkx)d"'] ,Td.Lyr +
: -SA !l.eo
SA t.e. 37 .1
- xt ' .
[l ¢ armema] 5] o
y+e L.e. '
By defining
t.e
* 9t,! et
) = | S e xp e
L.e.

employing integration by parts, and expanding £(y * €) in a Taylor Series,

Equation (75) may be obtained in the final form26

s
A t.e. 3.t .
1 -
WA (,Y,0) = 7 A @ Xy e (76)
A e oy - ,)Z ox R
“Sp y -y L.e.
where the symbol % represents the Mangler principal vz:lue.26 The Mangler
principle value is defined by the equation
SA y-€ SA
' T ? = '
* f(! ) d)" = lim J __{;L[)—Z- d)" + I .__{(L__z.) d)" - .___)Zf(..)..
s, O -7 &0 -y -y ©
-SA _SA y+e LY ’ -

Equation (76), found in many of the existing lifting surface theories, is
singular with respect to only the outer integral. The integral with re-
spect to x' possess only a discontinuity, since for y =y',

x > x'
x < x!

1im x - x' 2
x*x' [1+ R 1~ {0
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The integral equation, Equation (66), with Wa given by Equation
(76) , together with the kinematic condition, Equation (67), néw are in a
form suitable for mathematical solution. Given a solution < d {x,y) on
the surface of the airfoil, the flowfield may be computed. at a point of
interest. There are several methods which may be employed to obtain this |
desired doublet distribution. The method adopted here is related to the
27

finite element theories.

The pressure difference across the airfoil may be obtained from

Bernoulli's Equation

-2 42 - '
Ap = %p _[-Z(Um + uJ) Av:lA + (uA ~ Uy ) -2 vy AVA + (vAZ - VXZ) -
v =2 +2
ZWJ AWA + (WA = Wy )]

As a consequence of the fact that the singularities used to represent the
airfoil have been placed in a plane, the resulting velocity potential for
a cambered wing at incidence to the freestream is antisymmetric with

respect to that plane (z = 0 plane). Thus,

+ —4 -
uA = u

+ o
VAo 5 VA

+ -
WA = W A

Therefore, the pressure difference across the airfoil may be expressed in

the form

Ap = -p (U_+ uJ) Bu, (77)
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w_here the assumption that the spanwise velocity component is negligible
compared to the streamwise component has been employed in this last
equation.

Utilizing the definition of the doublet strength along with Equation.
(77), a relation for the change in the pressure coefficient across the -

airfoil may be determined -

AC =‘-2 (Uw+uJ) 2)1:c1
P UZ ax

(-]

(78)

Substituting Equation (78) into Equation (76) provides the result.

2
u_ 1 - x?
WA(X’Y’O)='8_1F%_dLZI oy AT &
sA(y'Y') %.e. J

Consider the airfoil to be composed of a number of finite, rectangu-
lar elements. In a mamner similar to finite element theories, it is
assumed that the pressure difference across each element is constant. In

addition, it will be assumed further that the velocity field induced by

the jet is also a constant on each element. The downwash duc to the kth

. - lth 3 - - n -~
element at the i~ control point can then be written {(vefer to

Y Xy
W - 1+ — Jax (79)
i [ e [ A
L R A

The resulting surface integral in Equation (79) is only a function of the

geometry of the element. The evaluation of this integral is treated in
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Appendix A where proper care has been taken for the situation in which k =
. Defining
bk

I(xis i;xak’xbk’yak’ybk) = Iki = J
Yak

' *bk
__9'_-7”“ i )dx' o)
(yi")")

th

the total downwash at the i~ element, for the case in which the wing

planform is divided into 2N elements, may be written

UmZN AC
z——L~_1

W,. = -

Because of geometric symmetry the pressure difference and velocity field

induced by the jet must be symmetric about the x-axis, therefore:

vl N oacy
Wei = - B o PS [T (81)
Al 8w el Yo * Ugpe k,i kN, i

‘where the kth element lies on the right semi-span wing section (y > 0) and

th

has as its reflection about the x-axis the k + N element (refer to

Figure 9). It may be shown further that

Tew,a = 7 16 V35 Xg0 Xpi ™ Yage Vo)

The unknown pressure difference for cuch element (/.\Cpk) may now
be obtained by applying the kinematic condition at the N control points,

which have been taken to be located at

68



=]

Lol
]

3= Xpi T 01 (5 %)

Yi = 0.5 Og5 * Vi)
Inserting Equation (81) into the kinematic condition results in a set.

of N simultaneous, linear equations for the N unknown pressure differences

N G dE, | o
k‘z-‘:l Uoo + uJ,k [Ik,i + Ik+N,i] - (Um + uJi) (1}' j. - ‘:_w]'i > 1= 1’...’1‘

-_o_ﬂ BC:N

C. Calculation of the Forces on the Airfoil

Once the pressure distribution on the airfoil has been obtained the

pressure forces may be computed directly.

Lp- = - II Ap' cos w"dSA' (83)
Sa
D, = - ” Ap' sin ' ds,’ (84)
Sa
df
where ¥ = tan™1 -75%

(For the situation under consideration ¢ = a). In the above equation L_
CDp) refers to the 1ift (drag) force experienced by the airfoil due to

the pressure difference across it (as opposed to the force created by
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the reaction to the jet). It should be mentioned that Equations (83) and
(84) do not include the leading edge suction force which provides only a
negligible contribution to the lift. Since the flow is considered inviscid,
the above equations also exclude skin friction effects. Written in terms

of non-dimensional variables, Equation (83) has the form

cos P' AC '

Cp ™ - HS _—SX_E"dSA'

A

where SA is the surface area of the airfoil. In terms of finite elements

covering the surface,

2N
1
C_=-% I cos y, AC S] (85)
Lp SA =1 k Tpk

vhere

Sk = (ka - xak) ¢ (ka = Yak)

is the area of the Kth element. It should be noticed that the assumption-
that the angle y is constant for an element has been employed in Equation
(85). Such practice is inherent to the definition of a finite element in
theories such as Wbodward's.27 Utilizing the symmetry conditions, Equation
(85) may finally be written in the form

N

z

cos y, AC , S (86)
k=1 k “pk k

o
>gﬂbo
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Similarly, the drag coetficient resulting from the pressure difference

across the wing may be obtained from the equation

__2
Cop = " 57

sin y, AC, S, (87)
A kel k ““pk “k

P

A ez

The total 1ift and drag coefficients for the airfoil may now be

obtained by including the reaction to the jet in Equations (86) and (87)

5y
= 1 i 88
CL=Cpp * 5 I C; c sin (t +a) dy (88)
5y
- _1 89
Cp = Cpp 5 I C;ccos (T + o) dy (89)

D. Calculation of the Velocity Field in the
Vicinity of a Tail Surface

The downwash at a point in the vicinity of a tail or control sur-
face downstream of the wing may be immediately obtained from the equations
of the previous sections. For simplicity, a point located on the x-axis

is employed for this purpose. The velocity at such a point is written-

. ' K ﬁ
R | Yo X 1 Yy X
Toud g ] “'—3—‘15;\'*?1?“ 5 &

s, R s; R

Again the first surface integral will be referred to as qACWA) and the

second as UJCWJ .
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1. The Velocity Field Tnduced by the Jet

The necessary equations for the determination of the velocity field
induced by the jet sheet at the point under consideration may be obtaincd
from the formulation of Chapter I1I. Because of symmetry the spanwise

velocity component is zero. Furthermore,

=

e

| 2
dg,' £y 1 E-ky K dx'
dx" x - x' k. 72| x=xt
1+( J j

uJ(x,O,O) = %—f pX C I[:n
o

n=1

] - t - -
1 N & kg K-F) dg' ; E-k; K7 g0
w.(x,0,0) =5 Z C(C + — -
J T 4 N s ; dx' k f 2{x - x'
n=1 J £ 2 J J
o J 1+ ~-
l+ X-x' X‘X

Proper account is taken. for the infinite upper limit and the singularity

at the origin in exactly the same manner discussed in Chapter IV.

2. The Velocity Field Induced by the Airfoil

The velocity induced by the airfoil at the point (x,0,0) may be-

obtained by employing the results of Section B.
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ﬁA(x,O,O) =0

YA(X,G,G) = {
2 Sa t.e.
U AC '
= b dy' N (N X - X '
WA(X,O,O) = - -S—TF * )—’-,—2- I Um T uJ (1 + K ) dx (90)
-SA Rl_ce.

Employing finite elements Equation (90) may be written in the form

2
U N AC
-. .= k
Wpx;0,0) = - g7 kﬁl @, + upJ Iy

where Ik may be found in Appendix A.

VI. COMPUTATIONAL RESULTS AND COMPARISON WITH EXPERIMENTAL
DATA AND OTHER THEORIES

A. Choice of Parameters for the Computations

The airfoil and jet geometries as well as values for the angle of
attack of the wing, the jet deflection angle, and the jet momentum coef-
ficient were chosen largely in accord with data available in the literature
for the purpose of comparison. Computed results were cobtained for a
rectangular airfoil with an aspect ratio \AR) of 6.8 equipped with a full
span jet flap. Choices for the remaining parameters along with the com-
puted results for the 1lift coefficient, the induced drag coefficient, and
the downwash angle (@) and pressure coefficient (Cp) three chord lengths
downstream of the airfoil are listed in Table 1.

A first solution was obtained for small values of a, T, and CJ by

employing initial values for the jet geometry obtained from the two-
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dimensional theory of Spence:l (refer to Appendix C). Subsequent solutions
‘were obtained using initial values obtained from the results of an existing
solution which had input parameters (o, T, and C J) close to those under
consideration.

Choice of the number of grid points employed to determine the neces-
sary integrals and the number of control points on the airfoil and the jet
was made on the basis of providing the highest accuracy for reasonable com-
putational times. By using 201 grid points, 20 control points on the jet,
and 32 elements on the wing, execution times of approximately 26 seconds
per iteration of the jet problem and 23 seconds to obtain the resulting
forces on the wing and induced downwash at a downstream location were
obtained. All computations were made on a CDC 6500. The factors B and v
(refer to Equations (32) and (33)) were each given a value of 10.for the

computations. The resulting values for Cn and a a fell in the ranges

0.05 < ICnl <6

10 < |a | < 160

The nearfield calculations were obtained in the region extending from the
trailing edge of the aitfoil to a point (;)' approximately 5 chord lengths
downstream. It will later be observed that this region contained the
primary contribution to the vortex strength, as it should.

A solution to the jet problem was assumed to be determined once the
sun of the magnitudes of the relative errors between the curvature values

obtained from two consecutive iterations was below 0.6 (resulting in an
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average relative error of 3 percent). However, for larger values of QJ
and a it was found that the relative errors of the curvature at each con-
trol point were approximately constant prior to satisfying the above con-
vergence criterion. Consequently, when these values were scaled to pro-
vide proper integrals (refer to Appendix D) the resulting changes from the
previous iteration was small. In such cases convergence became slow when
the average relative error became less than about 7 percent. An investi-
gation into this dilemma showed that the application of a decreasing func-
tional form for the damping factor (e) was fruitless. However, by assuming
that the value of the jet slope at infinity (refer to Appendix D) was half
its value at ; (a value of zero was employed in the original computations
for convenience), it was possible to reduce the average value of the
relative errors to 2 percent. Since the resulting value for the relative
error of the 1ift coefficient was only 3.5 percent, however, the above
error criterion was reduced to a value of 1.3 for these cases. Iterations
of the entire problem were terminated once the relative error between two
consecutive values of the 1ift coefficient was below 0.025. The. above
convergence criteria required approximately 3 iterations of the entire
scheme and an average of 6 iterations of the jet scheme. For the initial
values, however, as many as 10 iterations were required to converge on a

jet solution.
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B. Results

The variations of the lift coefficient with changes in the jet
momentum coefficient are provided in Figure 10. Comparison with the linear
theories of M’askell2 and T‘okuda4 are favorable. For small values of QJ
(linear region) the disagreement between the theories was less than 10
percent, However, the values of CL computed by the present theory for
large values of CJ. (monlinear region) are evidently higher than what would
be predicted by extending the curves obtained from the linear thcories.

10

Experimental data” are also available for the linear rcgion. It can be

seen in Figure 10 that agreement between the present theory and the experi-
mental data is also quite acceptable in that regime. It should be mentioned
that the results of Maskell2 have been increased by an appropriate factor

10 experi-

7

to account for the thickness of the airfoil employed in Alexander's
ments. The factor involved is discussed in greater dctail by Lissaman,
It can be seen in Figure 11 that the resulting variations of CL
with changes in a provided by the present (nonlinear ) theory lies slightly
below the experimental data and the curves obtained from the linear
theories. However, it has been observed that linear theories in general
tend to overestimate the 1ift, the difference increasing with larger values

28 The linear theories employed a lifting-line approximation

of o and T.
for the airfoil. It might be expected that the utilization of a lifting-
surface technique would lower these values in a manner similar to that for

15 It has been suggested that the linear theories pro-

conventional wings.
vide favorable agreement with the experimental data because of the ''fortui-

tous cancellations' of higher order effects.1 The results of Lissaman's
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theory are also depicted in Figure 11. They tend to lie even lower than
- those of the present theory.

The results for the induced drag coefficient are presented in
Figures 12 and 13. As already discussed in the previous chapter, the in-
duced drag (or thrust for the conditions encountered) resulting from
" the present theory only accounts for the reaction to the jet and the
pressure distribution on the airfoil. Contributions to the drag attributed
to form drag and to viscous effects, such as skin-friction or jet entrain-
ment, are not represented in this analysis. Drag coefficient values for
o = 0° as well as values obtained from Figure 12 for a # 0° are presented

10 data in Figure 13. The agrcement is again

and compared to Williams'
quite acceptable.

The distribution of the pressure difference across the wing is
shown in Figures 14 through 19 for three different cases. Since only four
elements were employed in each of the spanwise and chordwise directions
only basic trends can be obtained from these figures. For more refined
results it would be necessary to employ more elements at the cost of
computing time. As expected, a larger than normal pressure difference is
encountered in the vicinity of the trailing edge of the airfoil. For this -
reason a wing equipped with a jet flap experiences large nose-down pitching
moments. The spanwise distribution, however, is not very different from
conventional wings. This has also been observed in experiments.lo’28

The locations of the jet sheets in the plane of symmetry are shown

in Figures 20 and 21 for different values of CJ and a. Obviously, the
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jet lies well below the z = 0 plane. For this reason downwash results ob'--
tained from linear theories are open to serious question.

The vortex distributions provided in Figures 22 and 23 display the
proper logarithmic singularity at the origin. It is also apparent.from:
these figures, that the control points were located in a region which -
contains most of the vorticity. The distributions indicate that the vortex
strength becomes slightly negative beyond x = s g It is felt that this is -
a result of errors in the truncated series approximation employed for the
vortex strength; it is not likely to be real.

As a result of the large nose-down pitching moment experienced by
an aircraft equipped with a jet flap, an exceptionally large amount of
trim 'is required. Consequently, a control surface plays an important role
in such configurations. It is important, therefore, to know the flowfield
with some degree of accuracy in regions where the tail surfaces would be
located. Downwash results obtained from the present theory are shown in
Figures 24 through 27 in the form of the downwash angle (0 = tam-1 (-u/W))
and momentum or pressure information (Cp) . The results were obtained at a
representative point along the x-axis 3 chord lengths downstream of the

trailing edge of the airfoil (x = 0.88 s J).
VII. CONCLUSIONS

The results of the present theory show ample agreement with the
available experimental data and compare well with existing linear theories
in the operating regime where they apply. For the lift coefficient, both

the variation with C; and o found in the theory were satisfactory. The
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values of CL computed were slightly below the experimental data by an
increment which could easily be accounted for by considering the airfoil
thickness effect both in magnitude anci trend. The induced drag (thrust)
coefficient also agreed for the conditions considered. Regrettably, there
are no experimental data available for the position of the jet sheet for
a wing equipped with a jet flap for larger values of C y» @, OT T. This
situation should be remedied in experimental research. In addition, this
theory extends values for the force system of the airfoil over a wide
range of values for CJ and o, beyond that for which the linear theories apply.
Moreover, the downwash computations arc likely to be a substantial improve-
ment over results obtained from the linear theories.

The existing theory easily may be extended to include thc increase
in the 1lift due to the thickness of the airfoil and the jet. This may
be accomplished by employing a proper source distribution over the vortex
sheets used to represent the actual wing and jet. Furthermore, it has
been observed that entrainment effects are capable of providing substan-
tial gains in the lift coefficient under some circumstances. This is
especially true for the situation in which the jet is exhausted over a
small flap.29 Inclusion of entrainment phenomena into the present theory
is also possible. This may be accomplished by locating a proper sink
clistribution29 over the surface used to represent the jet-.

It should be mentioned that this theory is not limited to rectan-
pular airfoils equipped with full span jet flaps for which data was ob-

tained in the previous chapter. However, as it exists no account can be
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made for spanwise variations in Cy and T or a wing with dihiedral, More
general jet properties may be included by employing a suitable functional
form for the spanwise variations of the vortex strength (g).* Furthermore,
the presenf theory was developed in a mamner that any wing theory might be
employed. Therefore, more general airfoil geometries may be handled by

27 Finally,

utilizing more sophisticated wing theories such as W6odward's.
it should be noted that the ground effects problem may be treated by
employing an imaging technique.

The present theory contains many parameters such as the number of
control points, the grid point spacing, the factors 8 and v, etc. whose
values must be specified Eb.iﬂiﬁiQ: An investigation of the effects
changes in each of these parameters has on the solution procedure and re-
sults should be undertaken. Ultimately, it would be desirable to develop
an algorithm which would automatically adjust the values of these constants
depending on the values of T, a, and CJ. Furthermore, a study of diffcrent

functional forms for the damping factor (e) which would achieve convergence

at a faster rate should also be considered.

*
but not without some additional mathematical complexity in the integrals.
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APPENDIX A

Evaluation of the Integrals .

The theory developed within the main text contains several integrals
of standard form. A brief outline of the integration procedures and a

summary of the results are provided herein.

A. Integrals Inherent to the Horseshoe Vortex System

1 2

v o= "N~ _dn
1) I, =

(A1)

0 /(1 - nz) (nz + cz)

Referring’ to Equation (213.06) of Byrd and Friedman:”0 for the casem = 1

X
I, = k J cn? u du =  [E(Q) - k(z: K9] (A2)
0
where
K= —t— (A3)
J 1+ c2
1 2
2) = [ AW a0)
0 /1-nZ@+ch
1 1
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Employing the equations found on pages 45 and 49 of Petit Bois ™t

[zl

c” + 1

U]

I

) [sin‘l' @ - —S— tan ]
./cz + 1 1

1 2

n_ dn (A6)
0 P+ Ja-1H @ +cH

%
=’
=4
(%]
in

Consider Equation (213.12) of Byrd and Friedman>C

K .
k f 1 - snu
0

I3 = ooy 7 Q= kK@) - oo = k)] @

1 - (Té%qi)sn.u

where k satisfies Equation (A3).

B. Integrals Inherent to the Jet Problem

1 2
n_dn (48)

4 = 37z
-{ J1 - n2 (n2 + cz)

1) ' I

Taking advantage of the symmetry of the integrand and employing the trans-

formation
o=nz+c2
such that
dn = —do
. 2Jp --cz
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c?+1 2
I, = p-c do_
c2 J1-p+cffp-c* P
2+ | . 1
' dp - 2 -

- C

2 Jora+ch - ol -

_dp~

2 ehla v -l - A

Both of these integrals are elliptic and may be found in Byrd and Friedmanso

(Equations (235.00) and (235.01)).
I, = %k [K(K) - E(K)]

where k satisfies Equation (A3)

1
J1 - ln2 dn

2) I. = I
' > 3 (" +c)
Consider the transformation
E2 - r'2 + <:2
such that
E dE

The original integral may then be written

(A9)

(A10)
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I =2 J d_§(1+§‘)-2&;"‘
g £ -c

From Equations (218.10) and (318.02) of Byrd and Friedman>0

K
2 .
I, = 2&° J sd u du = k—kz [E&) - k2 K@) (A1)
0 C
where k satisfies Eqﬁation (a3)
1
3) =z | Ao g | (A12)
6~ "_;3— n
where 2z (x-52+ o - m? + o
=M-c) (n-c¥) (A13)
and c =y+i \/(x—g)f+;2
I, may therefore be written
dn (1-n) (1+n)

h-¢c) (n-c% (n~C) (n - c%)

L]
(=
i
| i e Ll

Bnploying Equation (259.05) of Byrd and Friedman30
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2K
16 = gs, I sd2 u du

0
2 &5 2
= B> [E® - k.° K@ (A14)
k° k, -
where Ba@-pls x-02sod (AL5)
B2= (-1 - %+ x-8)2 40l (A16)
¢ =I5 ()
o2
2_4-(A-B)
% e (A18)
Furthermore, it can be shown that
1im 2k 2 .
o Te> 7z B -k K =14
(o4
as should be expected.
1 |
8 1= J _n-n g (A19)
a/1-9%2 48
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Equation (A19) may be written

1 :
7 ”dja-mu+mm-dm-d)

Referring to Equation (259.03) of Byrd and I-‘riedman:"o

3 laZJ(a-a‘JZK

du
I - v
7 “wl|g.k, A + j
j=0 A+acnu)

5 g (@ - o)
ay[Zgaz K(k)+———z— (n,7_— )] (A20)

when A, B, g, and k satisfy Equations (A15) through (A18) and

A-B

o= 5 (A21)
A+B

@, = 7§ (A22)

By utilizing the 'Addition Equations' (Equation (10) of Byrd and
Friedman):(’0 it can be shown that

I,y K =21 (v2, K

Employing the additional relations
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2 2y ;
= - { - 1)[2 + 1+ + aly(d + o) + 2a]}
v ® 7—1&7(“ M2ay +1+a] +a ]

2
ox Bk K
x
kk?Z

Y |
AN (v, kK _ k o1 2
5k Tl 5 [E - k.~ 1]

AN (2, K _YE + (&’ ‘YZJK+(Y4"1<2)H

2
ay* 2v2 1 - ) &2 - )
2 a2 2
.38Y=- 2g 'Y2 [2)’(!'*'1"'0.2]
y a (@l -a)
2 2

ok _ 2k" -1 2 :
3'}7"'%5{}""?—0‘-2— [y + a™) + 2 a]}

where
2 2
: (A23)

3 P 2 ... P
I_7=gr YP_YZ)E+[Q-R+k—.2-)K+((f 1) Q+R k—[—?-"r I

+ QE - x)] (A24)
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where : 2 :
2K% - -
P = %(y + -—:(—:—le- [)’(1 + 02) + 2(1]) (AZS)
Q= -2y [Zya+l+ a2] (A26)
of (* - ¥4
2 [y + o& + 24
- Qo

It can be shown, with some difficulty that,

lunI

o Iz 2%k E-K) =1,

7
as it should.

-C. Integrals Inherent to the Finite Element Technique

Iss%ﬁj(l+x;g)d£ (A28)

where
R R

Defining the inner integral as J

J=¢g+ T dg
Jx - )%+ (v - m*

Using the transformation p = (x - £), the resulting integral may be found

in Dwight>2

J=£-Jx-0%+ -t (A29)

88

(23



in which £ is given the value of the limits.
The remaining integral must be considered over two intervals, one
containing the point y = n and one not containing this point. The latter

situation provides no difficulty

I, = j £- Jx-0%s v -m® o
8 v - m*

e _I/(x-a)2+ RO
v - n & -

The first integral can be found immediately

j dn |
y-m? Y0

The second integral may be determined by employing the transformation

pP=Yy-n
Then
- Joc -0+ (y - ) n = | Jox - g%+ o* o)
(y-n) o°
= J(X-E)ZHDZ + dp
p
Jix - 9%+ p°

2. 2
= - j(x-gg Y0+ 1n[p+JS(x - 8)° + %]
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- The final result may be written

Z 7 '
18=E- J(x-8‘+n)(y-n) +In [(y -n) + f(x-£)2+(y-n)2](A30)

If the interval of integration includes the point y = n one must
handle the resulting singular integrand. This may be accomplished by

. B T . B
employing the Mangler Principal Value”" which is defined as

€ b
£() dn , J £m) dn, -Zf(n]
(y-n)zy+e()'~n) €

b Y
% f(n) dn__ ;‘,’3 [ J
a O-n a
It may be shown that the resulting limit is identical to the result given
in Equation (A30).
By substituting arbitrary constant limits into Equation (A28), the

functional form employed in Chapter V may be obtained

d ' b
o yia b, d = [ 8o [ asXiba
c O-m7" g

=Cb-a)+ftz-d)z+cx-a)zd- Jo -0+ x-b)°
Yy -

b-a)+Jy -9+ x-a)? - Jiy- )+ (x-b)°
y -c
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-c+~/(y-c)2+(x-a)2

+1InY
y-c+Jy - )+ (x - b)*
Y- d+JSo - D% x - a)’ | D)

y-d+Jy - 9%+ x - b)?

Although the integral employed for the downwash calculations is a
special case of Equation (A28) use was made of the fact that the integrand
was symmetric. The integrations were therefore performed over an clement

and its reflection about the x-axis.

d b - b
IQEIQD.J'(1+x_{__€)dg+Jd—g-I(1+x;§)d€ (A32)
cn a 'dn a l

I.=2 [- (b-a) + Ja? '+'(x—a),7 - ./dz'-l'- (x-'-b)2
9 d

, k) + S+ )l - JE v (xob)
(o

+ 1n d +,/d2 + (x-at)2 -1n & *fJC + (X-é) ] (A33)
d +Jd2 + (x-b)z‘ c +Jc2 + (x-b)

where use has been made of the identitysz'
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tn(x /78] - 1 (x + 7]

For elements lying along the x-axis (c = 0) the Mangler Principal

Value®® must be obtained. ‘The resulting form is
d b
Ig (x, y52,b,0,d) =3x8 I(1+";5) dt
4" a

L.

L

92 .

B-a) +Ja¥ v x)? - JaZ+ x0)?, o a+Jal s xa)?
i

d +Jd” + (x-b)~

. X-a
In i‘-‘b‘]
J

(A34)
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APPENDIX B

Algori_thms for the Complete Elliptic Integrals

There are a number of existing algorithms which are capable of
providing extremely accurate results for the three types of elliptic
integrals. Because of the frequeﬁt number of times it is necessary
to compute these‘i_ntegrals it was also important to obtain methods
which were relatively quick. It was for this reason that the below
algorithms were chosen-for the first and second elliptic integrals over:

methods which employed Landen or Gaub transformations..

A. Algorithm for the Ccmputation of the First
Complete Elliptic Integral>>

2 2

+ 0.097932891) ktz +

K(k) = (((0.032024666 kc + 0.054544409) kC

2

1.3862944) - (((0.010944912 k_* + 0.060118519) kcz +

0.12475074) kcz +0.5) 1In (kcz) (B1)

where kc2 =1 - kz

B. Algorithm for the Computation of the
Second Complete Elliptic Integrali(_l_

E(K) = (((0.040905094 k_% + 0.085099193) k_? + 0.44479204) k  + 1.0)

2 2

(((0.01382999 k_ + 0.24969795) kcz) In (kcz)

+ 0.08150224) kc
vhere k2=1- K (82)
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C. Algorithm for the Computation of the-

' Third Complete Elliptic Integ'ralss

Existing algorithms for the computation of the third complete:
elliptic integral are more complex than the above algoritims. The method
of computation employed herein uses the Landen transformation and was

found to provide excellent results.

Given: kc’ kz, YZ'
d=1-+
PIFO = /4

ca = 10°Y/2 (yields about D significant figures)

IF kcxd=0_

FAILS®

IF kcxd#O : BEGINS -

k= Ikl
M=1
IF d > 0: IF d < 0:
c=1/d +1 a=1-4d
d=/d f=kcxkc-d
b =1/d d = /T/a
£f=1 =m/(a x d)
c=-m/f
£f=0
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L1:
IF In -
IF In -

_kl

k.|

1Y
fl

M)xkc
= a/d
2x (fxn+b)

Hh ©o 3
I

=C
d=n+d
n=M"
c=b/d+cC
M)=kc+M)

CA x n:

k.=27Va

(o4

Go to L1

< CA x n:

I(y%, k) = PIFO x c/MO.
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- APPENDIX C

Calculation of the Initial_Valugs for the
' Geometry of the Jet

For small values of the parameters C 'y O and t, results of
Spence'sl two-dimensional theory was utilized for the determination of
initial values for the jet geometry in the plane of symmetry. The

necessary equations are summarized below.
1 1 .1 .
£561) = 2t (@ - cos 7 6) + altan” 7 ¢y (sin 76y = 1) + sin 70"

%1 ¢ 1 ¢
In (tan (‘Z'+ 13)] + 2 (AU T + By o) [sin 71 - In (tan (‘z'+

N-1 2(A Tt + B a)
s n n .1 - 1
)] + & [2n cos ng, sin 5 ¢, - sin n¢, cos = ¢,]
I 0=l  4n® - 1 1 27 1 Z"1
(c1)
df; (¢4) - :
__ﬂé}fl_.= -7 cos3 %-¢l + a(sin %—¢1 -1) - (Aot + Boa) sin %—¢l cos2 %-¢l
51, N
+ COoS 2—¢1 nﬁl (An T + Bn o) sin n ¢1 (C2)
()=l 5L -Ein (tan ] )+N£1(A *+ B a) cos ng,] (C3
k(91 CJ cos” > ¢; [ (tan 2—¢1 2 " L&) cos ndy )
where x=—-——~:1—1——--1 ; 0<x<w (c4)

.
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and A,» B, are solutions to the sets of simultaneous linear equations

N-1
4 | 4 ~ 4 . }

(@ * o b0 * A @, * C:J'_bmn) A =c + Cg% ; m=0,...,N-1
(a +4 b )B "'Nil (a +£—b )B = a . m=0 N-1
“m0 C;; mo’ 0 n=1 nmn CJ mn n m H seeey
where a g = siné

an=(l+cos¢)sinng ;n >0

b = P (cos n¢_ + 2n tan %— ¢, sin n¢ ).

Cn = -(1 + cos. ¢m)

= -18? [sec %-(bm In- (tan %—¢m) - 1n (tan%_“bm)l

=

en =-Zsec%-¢m(1-sin%-¢m)
and
¢m = ’“_:. s m=0,...,N-1

Because Spence employed assumptions inherent to linear aerodynamic theory,
the relation for the curvature, Equation C3, was obtained from the approxi-

mation
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APPENDIX D

Curvature Integration Algorithm

The computations of the iteration scheme employed for the solution
of the jet problem are initiated with a set of values for the jet curva-
ture at the control points. These values are utilized to determine the
resulting jet slope values at the same locations. This task is not as
straightforward as might be presumed since the integrals of the curva-
ture must be properly bounded in order to ensure the evaluation of the

jet slopes., The definition of curvature

e o

[1+( I

along with the condition

("cb% x=0 = - tan (v +0)

provides a first order differential equation for the jet slope which has

the solution

(02)

ERPLE
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vhere
*n

-tan (¥ + a) k(x') dx' (D3)
Ji+tan? @+e) 0

A

Obviously A and therefore the integral of the curvature must be properly
bounded in order to ensure that the term under the radical of Equation
(D2) does not become negative (|A] < 1). In addition, it is expected
that the slope of the jet remains negative. Unfortunately, 1_:he_ set of
curvature values predicted from a previous iterate may not satisfy this

criterion. This dilemma is circumvented by bounding the integral

o N w
J k' d&x' = J k' dx' + I k' dx' 04)
0 0 N

where XN is the largest control point.

Because the curvature exhibits a logarithmic behavior, it has been
established that the best method for obtaining the integral of the
curvature at each of the N control points is by analytically integrating

the approximation

LR .
53 «[55) = oy EFTRC ml(s 09

The coefficients (b m) in the above series are determined for each interval
(Jgl+l - xn) by satisfying Equation (DS) at the M+l control points c_losest

to this interval. In this manner a set of values for the integrals
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X
n

e @)
0

necessary for the evaluation of An (cf. Equation D3) and ultimately the

first integral on the right hand side of Equation (D4) may be determined.
The remaining integral of Equation (D4) is obtained by employing

the series approximation for the slope (refer to Section A2 of Chapter

II1).

dfy M 1
= .- tan (T + a) + I 1a, [1 - -:-—-——]
Tdx 4m1 1 &+ 1l

where X = vx/s 3 The second derivative of f 5 may therefore be written

als M a
_._.%: .\_s)__ . 1 (1 + 1) ...:__1_~.,.'rz_
dx J i=1 x+ 1t

For large values of x, the above series may be truncated to provide the

approximations

df , R
~ -tan (t +a) +a, |1 - J (07)
K3 ll_ (f+1)7
2
d“f 2a, v
J o 1 (D8)

ax? Sy x + 1)3

Substitution of Equations (D7) and (D8) into @1) provides the resulting

approximation for the curvature
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Za1 v
s, (x +.1)3
K Vv J

ll + [—tan (t+o) +a; [1- #)}2)3/2
X +

ﬁhere, from Equation (D7)

(_d%w + tan (T + o)

Therefore

29 ( L, T tan (t + a) 09
372
& [1 + ( } &+ 13

Employing Equation (D9), it is now possible to obtain an approxiiate

value for the remaining integral of Equation (D4)

d{

T + tan (T + ) T = X, + 1

! dx' o 2 LdX &N o 0

372 = S VRS A

L e

Combining Equations (DZ), (U3), (D4}, and (D10)

df

.._J_) ] xN X + 1

dx fo tan (€ + a) _ J k! dx! + __.N_Z___‘__ Sy Ky (O11)

/1+ dez ﬁ-l- tan2 (Tt + a) 0
“dx e
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A value for the right hand side of Equation (D11) has already been obtained,

Therefore, by assuming a value for (df J/dx)oo (one wculd efcpcct the slope

. ..de} . de
of the jet at infinity to lie within the range TE{) <. < lxl= 0) a
N

ratio of the values of the left and right hand sides of Equation (D11)
may be obtained. This ratio provides a multiplying factor for the set

of integral values of Equation (D6) resulting in a properly bounded set.
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APPENDIX E

Calculation of the Grid Point Locations

The region of the jet located closest to the airfoil obviously
supplies the dominant effects on the wing not only because of its
proximity but also because it contains the largest values of the vortex
strength. It is therefore advantageous to employ more control points
in this region, the number increasing with increasing values of CJ, T,
and a. For this reason, the grid points (which ultimately provide the
control point locations) are chosen to lie at equidistant intervals along
the jet sheet.

With the-jet :slope known as a continuous function of x (refer to
Section A2 of Chapter III) the arclength (£) along the jet is determined

from the first order, linear ordinary differential equation

df 2 :
g = 1+(1%-) =2 (x) (EL)
where
Ex=0)=0

The solution to this system is obtained by utilizing a fourth order Runge-

l(utt:a23 technique to obtain the necessary starting values and a fourth

24

order Adams-Moulton“® scheme for the determination of the remaining values,

For the problem of concern these two techniques may be written as

103



A .
Eap =5 *pm [E) * 250 + A) + EG, + A E2)

where A =X - X

and
A o mpl - . o
Enel = 8n * g [9 B(X ) + 19 E(x)) - 5 E(x 1) * E0x,,)] (E3)
vwhere A= (Xh+l - Nh) = constant.
respectively.

Given a suitable interval (Af = h), values of X; G=1,..., 201
herein) which provide equally spaced values for the arc length (gi) may
now be determined. Since X, (gl =Xy = 0) is less than AfZ the procedure
is initiated by, choosing ié = h (the barred variables are used in or
calculated from Equations (E2) and (E3), whereas the unbarred variables
are those being sought) and calculating the resulting Eb from Equation
(E2). If Eé (refer to Figure 28a) is greater than £, = £; + AE (which
must be the case for the initial attempt)'is and Es are set equal to ié
and Eé respectively, the values of ié and h are haived, and a new value for
E} is determined. This procedure is continued until'Eé < 52, is obtained
(refer to Figure 28b). At this point the values of Ei, E}, and Es as well
as their absissa (ii, Eé, and ;3), and £,, are known therefore an inter-
polation scheme may be utilized to obtain X,

Having determined the three necessary startingvvalucs (ii, ié, ig)

the implicit Adams-Moulton technique is now employed. Es is first checked
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to insure its value is less than'Es (En = + Af). If it is not E'4,

n-1
_which is the value of ¥ at §'3 + h (where h is now the final result of

’

A the halving procedure described in the previous paragraph), is obtained

= from Equation (E3). This marching technique is continued until _E-i is

&
determined such that ’Ei > 53. The value of X4 is then obtained from the

" interpolation scheme (refer to Figure 28c). This method is continued

Jl until an array containing the desired number of abscissa (xi) has been
{4
3
i)

determined.

]
i
-f
t
I
)
)

’ A second order, divided difference interpolation technique24 was

" chosen for the determination of the abscissa (x)- This scheme has the

form
xk ='X[Ei-'2] + (gk-gl'z) x[gi-Z’ Zi"].] + (gk"gl_z) (gk'_g-i_l) x[gi-Z’ gi‘l’ E_I]
where x[E'i_J. ens ,Ei] is a divided difference. Therefore,

—
.

X[Ei—Z] = Xi-2

X 4y - X.
-1 %52
Xy Bgl = oy
bi-1 T 5i-2
: _ 1 [%1 - X5 i Xj.1" Koo
x[gi_zs Ei_l, Ei] - . E‘ - —
, g - B2 \& -l BiagCEio

The values E'i, 51-1’ and E'i_z are chosen such that only E'i is greater

than gk (refer to Figure 28c).
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APPENDIX F

Evaluation of the Integrals Associated With the Jet Problem
in a Neighborhood of the Control Point

Consider the problem of evaluating the Cauchy principal value

Ve £ 4o
¢ =" (F1)
x-gy

which involves a singularity at the point x' = x. The function £(x')
is continuous and non-singular in the region of concern (refer to
Section Al of Chapter IV). Consequently, for small values of € and €2»
a sufficient approximation for this integral may. be obtained by employing
a fourth degree polynomial approximation for f(x'). The resulting
integration may then be performed analytically.

The method used herein employs Lagrange's interpolation foi‘mula24
for approximating f(x')in the region X5 < x' < X, (where X, < X-§ and

Xy > x+ez)
4
f(x') = .ZOQi(x') £(x;) (F2)
i= -

where

Getexy) (et ) et ) (o)

< = (Xi“x.j) (xi-xp ﬁi-xm) (xi-x n) 3 Jokmn # 4 (F3)

106



Xy = _x-el
Xy = X
Xz = xte,

Defining

A ; jrk,myn Fi (F4)

i- (x; - )(x1 xk) (x3-%,) (xl-xn)

Equation (F3) may be written.

Q=& &t -ag xPeay w¥oa, x 395) (FS)

30i = %5 Xk X Xn

a5 = xj (xk(xm+xn) T X xn) T Xk X %
A1 = X5 (X + X + X))+ 00+ X)) g X
B3 TX P TR T

for j,k,m,n # i. Employing the identity x' = x - (x-x'), Equation (FS5) may
be expressed in the form

Q = A {(x-x')4 + [a:,)i - 4x] (x-x')s + fa,; - 3x By + 6x2]

(x-x'):Z + [ali - 2x a,: * 33-_:2 azs - 43(3] (x-x') +

lag; - x 2y + X2 ay - x> agy * < (F6)
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Substitution of Equation (F6) into Equation (F2) provides the result

4
f(x') = I B, (x-x')
i=0
where :

4 2 3 4
BO=JZOf(x)A[a -xa1j+x azj-x a3j+x]
B, = g f(x:) A.[a,; - 2x a +3x2a -4x3]

17 55 09 P 23 3

4 2
Bz=jgo f(xj) Aj[aZj - 3x aSj + 6x”]

4
By = L f(x)A [a - 4x]

j=0

4
B,= I f(x)A

4 Jr.-.o J

This last expression for f(x') may now be used in Equation (F1) to ob-

tain desired approximation

Xte

2 . 4
P e 1 e o
X‘El
la [
B, In % (¥8)

108



e

e

TABLE

COMPUTED RESULTS

T = 31.3 degrees

a (degrees)

‘L

O (degrees)

J D P
2.08 0 2.548 -1.777 8.62 0.02874
2.08 5 3.259 -1.499 11.01 0.04397
2.08 10 3.925 -1.113 13.28 0.06248
2.0 0 2.434 ~1.709 8.22 0.02662
3.0 0 3.326 -2.563 10.37 0.04341
4.0 0 4.197 -3.418 12.35 0.06199
6.0 0 5.817 -5.127 15.43 0.09904
8.0 0 7.388 -6.836 18.00 0.13562
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b) Blown Flap,

c) Augmentor Wing..

Figure 1. Powered Flap Configurations.
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Figure 2. Jet-Flap and Airfoil Geometry.
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Figure 3. Basic Flow Considerations.
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Figure 7. Variation of the Integrands About the Control Point.

61T



&l

0?1

n
z e n_\vJ
~ n_\J
V)
- A
U

BOUND VORTEX < 4
< Xp /‘?’

LINE — —>
' e

r\ .
U .

A
\J

” e a)
/ -~ AEAY;
~ C\/

\AIRFOIL

~ A
v

Figure 8. Horseshoe Vortex System.



kM AINITE
ELEMENT.

k+N™ FINITE
ELEMENT

aj Location of the kth Tinite Element
and its Reflection..

0.9 (xqi +Xp;)

PR~
/ XM(YN‘Y&

b) Location of the Control Point

on the ith

Element.

Figure 9. Finite Element Geometry.

121




[AA

* RECTANGULAR WING
FULL SPAN FLAP
AR =68
as=Q° -~
v=313° " -
I o wu.ums & ALEXANDER (EXPT)
g . === MASKELL -& SPENCE ‘(THEORY) -
_-75 / ~ === TOKUDA (THEORY)
-% 77— = —L PRESENT THEORY.
'_,./‘ / t ;
T ' S :
- ! 1
2 4 6 8

C,

Figure 10. Variation of the Lift Coefficient with Jet
' Momentum Flux for ‘a = 0°,



RECTANGULAR WING

AR=6.8

C,)= 2.08
(-]

v=3.3

O WILLIAMS & ALEXANDER (EXPT)
— ~—— MASKELL & SPENCE (THEORY)

~— ——— TOKUDA (THEORY)
------ LISSAMAN (THEORY)

PRESENT THEORY

FULL SPAN FLAP _ o

|
Oo 3

a (DEGREES)

Figure 11. Variation of the Lift.Coefficient with
Angle of Attack’ for Cy = 2,08.

0

123



-CD |

RECTANGULAR WING
FULL SPAN FLAP

AR=68
C,=2.08
v = 31.3°

Figure 12,

124

5
" a (DEGREES)

Variation of the Drag Coefficient with

Angle of Attack for CJ = 2,08,

10



RECTANGULAR WING .
- AR=6.8- - ) )
v=31.3°

PRESENT THEORY
O a=0°
2l - X a=65°

: O a=il5*

——— WILLIAMS 8 ALEXANDER (EXP) o
0 a=0° ~a=0

V ax6.35° Ay '
A a=}1.5° .2 X _as=65°

-Cp

Figure 13. Variation of the Drag Coefficient
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Figure 23. Variation of the Jet Vortex Strength in the Plane of
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Jet Momentum Coefficient for a = 0°.
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